
Contents

List of Definitions 3

List of Results 3

1 Introduction 7

2 Algebra review 9
2.1 Matrices and Eigendecompositions 10
2.2 Singular Value Decompositions, or SVD 16
2.3 Projection along Vectors, Angles, and Correlation 18
2.4 Orthogonal Projectors . 21
2.5 Measuring distances . 22

3 Basic Exploratory Data Analysis 25
3.1 Sanity Checks and Univariate Plots 25
3.2 Scatterplots . 27
3.3 Star plots . 29
3.4 Chernoff faces . 32
3.5 Andrews curves . 34
3.6 High-dimensional datasets . 36

4 Dimension Reduction Techniques 43
4.1 Multivariate moments . 43
4.2 Principal Component Analysis . 44

4.2.1 Basic definition . 44
4.2.2 Population Principal Components Analysis 46
4.2.3 Subspace Characterizations of Principal Component Analysis . 49
4.2.4 Sample Principal Components 51
4.2.5 Deciding the number of principal components 52
4.2.6 Interpreting the principal components 53
4.2.7 Principal component analysis on standardized variables 57
4.2.8 Sampling Properties of Principal Components (not examinable) 59
4.2.9 Principal components plots (EDA) 64

4.3 The Biplot . 81
4.4 Canonical Correlation Analysis . 86

5 Multivariate Inference 91
5.1 Multivariate probability distributions 91

5.1.1 Multivariate Normal distribution 91
5.1.2 Wishart distribution . 101
5.1.3 Hotelling’s T 2 distribution . 104

5.2 Parameter estimation . 105
5.2.1 Point estimates . 105
5.2.2 Confidence regions . 107
5.2.3 Asymptotics of the Sample Mean 111

2

5.3 Hypothesis testing . 112
5.3.1 Test 1 multivariate Normal mean 113
5.3.2 Likelihood Ratio Tests . 121
5.3.3 Compare 2 multivariate Normal means 123
5.3.4 Compare K multivariate Normal means 126
5.3.5 Repeated measures analysis 129

5.4 Checking multivariate Normality . 136

6 Classification (or Supervised Learning) 139
6.1 Basic Theory of Classification . 139
6.2 Classification for multivariate Normal predictors 143
6.3 Data-based classifiers and out-of-sample performance 148
6.4 Linear Discriminant Analysis . 153
6.5 K-Nearest Neighbours Classification 158

6.5.1 Comparison of 1NN with the Bayes classifier 163
6.6 Classification and Regression Trees (CART) 166
6.7 Logistic Regression Classification . 171

7 Clustering (Unsupervised Learning) 177
7.1 Measuring distances . 177
7.2 Hierarchical clustering . 179
7.3 K-Means Clustering . 185
7.4 Other Clustering Algorithms . 190

7.4.1 Combination of hierarchical and K-means clustering 190
7.4.2 Model-based clustering . 190

7.5 Cluster stability . 196
7.6 Heatmaps and clustering to visualize big data 200

8 Additional Topic: Kernel Methods (still ST323) 203
8.1 Kernel Principal Component Analysis 203
8.2 Kernel Mean Embeddings . 206

9 Advanced Topic (only ST412): Multidimensional Scaling 209
9.1 Introduction . 209
9.2 Classical scaling (also called classical MDS) 210
9.3 Beyond classical scaling . 213
9.4 Quality of the approximation and number of dimensions 217

3

4

List of Definitions

2.1.2 Definition (Positive definite matrices) 10
2.1.3 Definition (Eigenvalues and eigenvectors) 11
2.1.9 Definition (Power of a symmetric matrix) 16
2.3.1 Definition (Angle between vectors) 20
2.4.1 Definition (Orthogonal Projector) 21
2.5.1 Definition (Distance or Metric) . 22
2.5.2 Definition (Quadratic form) . 23
4.1.1 Definition (Multivariate moments) 43
4.2.1 Definition (Principal Components) 44
4.2.8 Definition (Sample PC loadings) 51
4.3.1 Definition (The Biplot) . 81
4.4.1 Definition (Canonical variables) . 86
5.1.1 Definition (Multivariate Normal Distribution) 91
5.1.16 Definition (Ellipsoid) . 96
5.1.23 Definition (Wishart Distribution) 101
5.1.25 Definition (Hotelling’s T 2 Distribution) 104
5.1.26 Definition (F distribution) . 104
5.3.5 Definition . 121
6.1.1 Definition (Classification rule) . 139
6.3.1 Definition (Confusion matrix) . 149
7.4.1 Definition . 191
8.1.1 Definition (Kernel function) . 204
9.3.1 Definition (Stress-2 function) . 213
9.3.2 Definition (Sammon and elastic scaling) 214
9.3.3 Definition (Non-metric scaling) . 214

List of Results

2.1.1 Theorem (Basic results about Determinants and Traces) 10
2.1.4 Proposition (Calculation of eigenvectors and eigenvalues) 11
2.1.5 Theorem (Fundamental results about eigenvalues and eigenvectors) 11
2.1.6 Remark (Non-uniqueness of eigenvectors) 12
2.1.7 Theorem (Spectral Decomposition Theorem) 12
2.2.1 Theorem (Singular value decomposition, or SVD) 16
2.2.2 Proposition (Link between spectral decomposition and SVD) . . . 16
2.2.3 Theorem (Eckart–Young–Mirsky Theorem) 17
2.4.2 Proposition (Characterization of Orthogonal Projectors) 21
2.4.3 Lemma (Poincaré’s inequalities) 21
4.1.2 Proposition (Moments of linear transformations) 43
4.1.3 Proposition (and Definition of Total Variance) 43
4.2.2 Remark (definition of PCA) . 46

5

4.2.3 Theorem (PC loadings, population version) 48
4.2.4 Remark (PCA) . 48
4.2.5 Proposition (Characterization of PC scores) 50
4.2.6 Proposition (Characterization of PCA by Orthogonal Projections) 50
4.2.7 Proposition (Characterization of PCA by Approximations) 51
4.2.9 Proposition (Sample PC loadings) 51
4.2.13 Remark (Interpretation of PC scores) 56
4.2.14 Proposition (Correlation between variables and PC scores) 57
4.2.16 Theorem (Asymptotic distribution of eigendecomposition) 59
4.3.3 Remark (Relationship between biplot and principal components) . 83
4.4.2 Remark . 88
4.4.3 Theorem . 89
5.1.2 Proposition (MGF of MVN) . 91
5.1.6 Proposition (Affine transformation of MVN) 92
5.1.7 Remark (Subvectors of MVN are MVN) 92
5.1.9 Lemma (MVN technical lemma) 93
5.1.10 Proposition (MVN and independence) 93
5.1.12 Theorem (Karhunen–Loève Expansion for MVN) 93
5.1.13 Proposition (Density of MVN) . 94
5.1.17 Proposition (Contours of MVN density) 96
5.1.19 Proposition (Conditional distributions of MVN) 99
5.1.21 Proposition (Transformation to independent variables) 100
5.1.24 Proposition (Properties of the Wishart Distribution) 103
5.1.27 Proposition (Link between Hotelling’s and the F distribution) . . . 105
5.2.1 Lemma (MLE technical lemma) 105
5.2.2 Proposition (MLE for the mean and covariance of MVN distribution)106
5.2.3 Proposition (Multivariate version of Fisher’s Theorem) 107
5.2.5 Proposition (Confidence regions for µ) 108
5.2.7 Proposition (Confidence regions for µ1, . . . ,µK) 111
5.2.8 Proposition (Law of Large Numbers and Central Limit Theorem) . 111
5.3.1 Remark (Rejecting and Accepting Hypotheses) 113
5.3.2 Proposition (T-squared Test) . 113
5.3.6 Proposition . 121
5.3.7 Proposition (LRT and Hotelling’s test) 122
5.3.10 Proposition (2-sample Hotelling’s test) 123
5.3.12 Proposition (not examinable) . 126
6.1.2 Proposition (Expected cost of misclassification) 141
6.1.3 Proposition (Bayes’ Classifier) . 141
6.1.4 Remark (Bayes’ classifier using posterior class probabilities) 141
6.1.5 Proposition (Bayes’ classifier in special cases) 142
6.2.1 Proposition (Optimal rule for MVN data and equal covariances) . 143
6.2.3 Proposition (Optimal rule for Normal data and unequal covariances)146
6.4.1 Proposition (Fisher’s Linear Discriminant Analysis) 154
6.5.2 Proposition . 164
6.5.3 Proposition (Non-examinable) . 165
7.3.1 Remark (Variants of K-means) . 187

6

8.1.2 Proposition (Every feature map defines a kernel) 204
8.1.3 Theorem (Moore–Aronszajn theorem: every kernel has an associ-

ated feature map) . 204
8.2.1 Proposition . 208
9.2.2 Proposition (Classical MDS) . 213

7

8

1 Introduction

Multivariate statistics focuses on the situation where several random variables (usu-
ally related) are observed for a single individual. For instance, recording the ex-
amination marks for all students taking this course forms a series of univariate
observations, whereas recording the examination marks that each student obtained
in five different courses would constitute multivariate observations. As you can see,
multivariate observations are the norm rather than the exception, we rarely measure
one single variable in isolation!

Suppose that we have p variables and n individuals. Many classical multivariate
statistical methods focus on the case where p < n, but, through modern research,
many of these classical techniques have been extended to the case where p is (possibly
much) greater than n.

The general topic of multivariate statistics contains a very broad range of tech-
niques. Iin this course we will only be able to cover a selected subset of these
techniques. However, the intuitive ideas and chosen examples that we will see form
the basis from which many other methods arise, so at the end of the course you
should have a good notion of what multivariate statistics can do for you.

Below is one possible classification of sub-topics within multivariate statistics,
with some examples.

1. Exploratory data analysis

The aim is to explore large datasets to get an informal idea of the kind of
information that they contain. One is usually interested in producing plots
or tables that summarize multivariate information in an easily interpretable
manner, or that highlight certain features that are not easy to detect by staring
at the data or using univariate/bivariate methods (histograms, contingency
tables, scatter plots etc.).

For instance, suppose a group of students are asked to rate how important
several characteristics are in order to have a good lecture (e.g. good notes, well-
organized, knowledgeable professor etc.). Suppose we ask a class of n = 50
students about p = 10 such characteristics. Are some of these characteristics
consistently ranked high/low by most students? Are there groups of students
giving overall similar answers? If we also asked professors these same questions,
can we get an overall view of how they compare with students?

As usual, exploratory analysis often serves as a first look at the data, to help
decide how to perform subsequent analyses (for instance, those listed in the
following sections).

2. Inferential statistics

The goal is to learn (or infer) the characteristics of the population from which
the observed sample was obtained, while characterizing uncertainty. For in-
stance, one might perform a multivariate test to compare several means across

9

K groups (as opposed to univariate tests such as the F-test that compare a
single outcome across K groups). Another example is to jointly regress a set
of response variables on a set of predictors, which is an extension of the uni-
variate linear model where we study the effect of a set of predictors on a single
response.

One more example is to learn about the correlation structure between vari-
ables, and then compare this structure across two groups. As an illustration,
suppose that in normal conditions genes A, B and C interact with each other,
so that their expressions are correlated. A scientist might be interested in
studying what happens in cancer patients: changes in the correlation struc-
ture could indicate that the disease interrupted the usual interactions between
these genes.

3. Classification

The objective is to classify an individual into one of K groups, based on a
sample of individuals (called the training sample) for which we do know the
group labels. As opposed to clustering problems, here groups are known in
advance.

For instance, the online movie streaming company Netflix announced the so-
called Netflix contest a few years ago. The goal was to determine which movies
should be recommended to a given individual. To simplify, suppose Netflix
ratings for a given film range from 1 star (hated the film) to 5 stars (loved it),
hence here we would have K = 5 classes. Given the ratings that an individual
gave to previously viewed films, can we predict his rating for a future film?

4. Clustering (or Class Discovery)

The goal is to find groups of individuals (or groups or variables) that behave in
a similar manner. For instance, suppose we collect p = 10 macro-economical
variables for n = 50 countries. Clustering could help detect two subsets of
countries that behave in a similar manner, e.g. developed vs. developing
economies.

The key in cluster analysis is that one typically does not know which are these
groups, or if they even exist, and hopes that a clustering analysis will help re-
veal them. For instance, doctors suspect that not all patients diagnosed with
Alzheimer’s Disease suffer the same variety of the disease, but they do not have
any clinical test to tell these suspected varieties appart. An approach that has
been taken is to study the complete genome of a sample of individuals, and
then group patients with similar genome characteristics (in some sense) in the
hopes that these groups would correspond to disease subtypes.

10

2 Algebra review

Humans have difficulties in processing data that have more than a few dimensions
(for most of us, 3 dimensions in space or perhaps 3 dimensions in space + time is
as good as it gets). As the number of dimensions (measured variables) grows, our
intuition may fail and it is helpful to use some of the tools provided by linear algebra.
Here we review some notions that are basic but can be tremendously useful, and
will serve as a basis for much of the material we will cover during the course. It is
important that you familiarize yourselves with these ideas, they will pay off in the
very short run.

We start with some basic notation.

• p, q ∈ {1, 2, . . .} will always denote positive integers, Rp is the p-dimensional
real space, and Rp×q is the space of p × q real matrices. All matrices and
vectors are real (unless explicitly specified).

• Vectors are in small boldface letter, e.g. x,y ∈ Rp, and are always column
vectors, unless explicitly specified. For instance,

x =

x1

x2
...
xp

 .

The i-th entry of x is typically written xi.

• We denote matrices with uppercase letters, e.g. V,W,A,B and their corre-
sponding (i, j) element with lowercase letters, so for instance if V is a p × p
matrix, vij is its (i, j) element, sometimes also written (V)ij.

• We indicate the transpose of V with V T. If V = V T, we say that V is
symmetric, or self-adjoint. The transpose of a (column) vector x is written
xT. It is a row vector with the same elements as x.

• 1 = (1, 1, . . . , 1)T will denote the (column) vector and its dimension will be
implicitly determined by the context; if we wish to emphasize its dimension,
we will write 1p ∈ Rp. We shall denote by I the (square) identity matrix,
with 1s on the diagonal and zero everywhere else. Its dimension is implicitly
defined, unless we write Iq, which means it is the q × q identity matrix.

• Constants will be denoted by Greek letters, e.g. α, β, λ ∈ R.

• αx is the same as x ∈ Rp, but with each entry multiplied by α. Similarly for
αV , where V is a matrix.

• x + y means we add vectors x and y element-wise (of course x and y must
have the same number of elements), VW is the matrix product (supposing
that the matrices V,W have compatible dimensions).

11

• If x,y ∈ Rp are two vectors, then 〈x,y〉 =
∑p

i=1 xiyi is the inner-product (or
dot product) between them. Notice that 〈x,y〉 = xTy ∈ R, but xyT ∈ Rp×p.

• |x| will denote the Euclidean norm of x ∈ Rp, i.e. |x| =
√∑p

i=1 x
2
i .

2.1 Matrices and Eigendecompositions

Let A and B be p × p matrices, denote their determinants by det(A) and det(B)
and their inverses by A−1, B−1. Also define the trace of A by Tr(A) =

∑p
i=1 aii.

Theorem 2.1.1 (Basic results about Determinants and Traces).
We have the following identities:

1. (AT)−1 = (A−1)T,

2. (AB)−1 = B−1A−1,

3. det(A) = det(AT),

4. det(A−1) = 1/ det(A),

5. det(AB) = det(A) det(B),

6. det(αA) = αp det(A),

7. Tr(A+B) = Tr(A) + Tr(B),

8. Tr(AB) = Tr(BA). This also holds if A,B are rectangular such that
AB is defined and is a square matrix.

9. Tr(B−1AB) = Tr(A).

Proof. Show 1, 2, 7, 8, 9.

We review the concept of positive definite matrices (sometimes called non-negative
definite matrices), which we shall see later on is important for defining distances be-
tween points.

Definition 2.1.2 (Positive definite matrices). A square p × p matrix
A is said to be positive definite if and only if xTAx > 0 for any non-
zero vector x. When xTAx ≥ 0 for all non-zero x the matrix is said to be
positive semi-definite (or nonnegative definite). Similary, A is negative
definite, respectively negative semi-definite, if xTAx < 0, respectively
xTAx ≤ 0, for all non-zero x.

We now review the concept of eigenvectors and eigenvalues, which will prove
useful during the course, and their relation to positive definiteness.

12

Definition 2.1.3 (Eigenvalues and eigenvectors). Let A be a p × p
square matrix. A non-zero vector v = (v1, . . . , vp)

T is an eigenvector of A
if and only if Av = λv, and in this case λ is called its eigenvalue.

In general, eigenvectors may either not exist or may involve complex numbers,
but in this course we shall focus on certain matrices A for which eigenvectors exist
and have real entries.

Before proceeding we recall how to compute the eigendecomposition (eigenvalues
and eigenvectors) of A, at least conceptually.

Proposition 2.1.4 (Calculation of eigenvectors and eigenvalues).
λ ∈ R is an eigenvalue of A if and only if det(A − λI) = 0, where I is
the identity matrix. In particular, if λ is an eigenvalue of A, then the
corresponding eigenvector v satisfies (A− λI)v = 0 (a vector of zeroes).

Proof. Assume v is a non-zero vector. Then

Av = λv ⇔ (A− λI)v = 0 ⇔ |A− λI| = 0.

That is, to find eigenvalues we could in principle find the solutions of det(A −
λI) = 0, which we denote λ1, . . . , λp (not all of them need to be distinct). To find the
corresponding ith eigenvector we solve the system of linear equations (A−λiI)vi = 0
(although the solution is not unique—see below).

In practice, eigendecomposition algorithms work differently; note in particular
that given an eigenvector vi it’s trivial to find the corresponding eigenvalue λi =√

(Avi)TAvi / (vT
i vi), but finding vi given λi is nontrivial.

In R we can find the eigendecomposition using the function eigen. Here are
some fundamental results about eigenvalues and eigenvectors for symmetric matri-
ces.

Theorem 2.1.5 (Fundamental results about eigenvalues and eigen-
vectors). Let A ∈ Rp×p be symmetric.

1. A has p linearly independent eigenvectors with (not necessarily dis-
tinct) real eigenvalues λ1, . . . , λp. The multiplicity of an eigenvalue is
the number of linearly independent eigenvectors that are associated
to it.

2. The eigenvectors corresponding to different eigenvalues are orthogo-
nal: vT

i vj = 0 if Avi = λivi, Avj = λjvj and λi 6= λj.

3. det(A) =
∏p

i=1 λi

4. Tr(A) =
∑p

i=1 λi

5. If vi is an eigenvector of A with eigenvalue λi and α 6= 0, then any
αvi is also an eigenvector and also has eigenvalue λi.

13

6. If B = αA where α is some constant, then B has the same eigenvec-
tors as A, and the ith eigenvalue of B is αλi.

7. If the inverse A−1 exists, then it has the same eigenvectors, with
corresponding eigenvalues 1/λ1, · · · , 1/λp.

8. A symmetric matrix A is positive definite if and only if all λi > 0,
and negative definite if and only if all λi < 0. When all λi ≥ 0,
the matrix is positive semi-definite (or negative semi-definite if all
λi ≤ 0).

These properties are important because many multivariate methods are based on
analysing covariance matrices, which are symmetric and positive definite (or semi-
definite). The eigenvalues are then all real, and are traditionally ordered λ1 ≥ λ2 ≥
· · · ≥ λp. Also, from property (5), if vi ∈ Rp then we can without loss of generality
use the unit eigenvector

ei =

√
1

vT
i vi

vi

and define the matrix E to be the matrix with columns e1, e2, . . . , ep. Note that
ETE = I

(
and therefore EET = I, since (EET)E = E(ETE) = EI = E

)
. Real

square matrices with this property are said to be orthogonal.

Remark 2.1.6 (Non-uniqueness of eigenvectors). Notice that even
when we restrict eigenvectors to have length 1, they are not uniquely de-
fined (i.e. −ei is also an eigenvector with length 1). Furthermore, if there
are two linearly independent vectors that have the same eigenvalue, then
any linear combination of them has the same eigenvalue. Eigenvectors are
therefore not uniquely defined; but the subspace spanned by all eigenvec-
tors corresponding to an eigenvalue is uniquely defined.

The eigenvectors and eigenvalues give us a useful way to re-construct the matrix.
The following result is a major result of linear algebra. You should know it like the
back of your hand.

Theorem 2.1.7 (Spectral Decomposition Theorem). Let A be a p×p
real symmetric matrix. Then there exists a real orthogonal matrix E and
a real diagonal matrix Λ such that

A = EΛET .

We see that the diagonal elements of Λ, denoted here λ1, . . . , λp, are eigen-
values of A and the columns e1, . . . , ep of E are orthonormal eigenvectors.
An equivalent expression for A is

A = λ1e1e
T
1 + λ2e2e

T
2 + · · ·+ λpepe

T
p .

Check that this result is indeed valid in light of Remark 2.1.6. Looking at the

14

expression, it becomes clear that eigenvectors with large |λi| will have more weight
in the reconstruction, hence in some sense they are more essential ingredients of A.

Example 2.1.8 (Symmetric Matrix Approximation using Spectral Decomposition).
Let us take a matrix A, find its eigenvectors and eigenvalues and then successively
reconstruct A. Below is the R code and output, where we store the reconstruction of
A into a new matrix B. We see that with 3 eigenvectors B already gives a reasonably
good approximation to A. This can also be seen visually in Figure 1.

A <- matrix(c(1,.9,.5,.1,.1, .9,1,.5,.1,.1, .5,.5,1,.5,.5, .1,.1,.5,1,.9,

.1,.1,.5,.9,1), nrow=5, byrow=TRUE)

A

[,1] [,2] [,3] [,4] [,5]

[1,] 1.0 0.9 0.5 0.1 0.1

[2,] 0.9 1.0 0.5 0.1 0.1

[3,] 0.5 0.5 1.0 0.5 0.5

[4,] 0.1 0.1 0.5 1.0 0.9

[5,] 0.1 0.1 0.5 0.9 1.0

l <- eigen(A)$values

v <- eigen(A)$vectors

op <- par(mfrow=c(3,2), mai=rep(.4,4), oma=rep(0,4))

image(A)

title(main="True matrix")

B <- l[1] * matrix(v[,1],ncol=1) %*% matrix(v[,1],nrow=1)

round(B,2)

[,1] [,2] [,3] [,4] [,5]

[1,] 0.50 0.50 0.59 0.50 0.50

[2,] 0.50 0.50 0.59 0.50 0.50

[3,] 0.59 0.59 0.70 0.59 0.59

[4,] 0.50 0.50 0.59 0.50 0.50

[5,] 0.50 0.50 0.59 0.50 0.50

image(B, zlim=range(A))

title(main = 'Rank 1 approx')

B <- B + l[2] * matrix(v[,2],ncol=1) %*% matrix(v[,2],nrow=1)

round(B,2)

[,1] [,2] [,3] [,4] [,5]

[1,] 0.92 0.92 0.59 0.07 0.07

[2,] 0.92 0.92 0.59 0.07 0.07

[3,] 0.59 0.59 0.70 0.59 0.59

[4,] 0.07 0.07 0.59 0.92 0.92

[5,] 0.07 0.07 0.59 0.92 0.92

15

image(B, zlim=range(A))

title(main = 'Rank 2 approx')

B <- B + l[3] * matrix(v[,3],ncol=1) %*% matrix(v[,3],nrow=1)

round(B,2)

[,1] [,2] [,3] [,4] [,5]

[1,] 0.95 0.95 0.5 0.10 0.10

[2,] 0.95 0.95 0.5 0.10 0.10

[3,] 0.50 0.50 1.0 0.50 0.50

[4,] 0.10 0.10 0.5 0.95 0.95

[5,] 0.10 0.10 0.5 0.95 0.95

image(B, zlim=range(A))

title(main = 'Rank 3 approx')

B <- B + l[4] * matrix(v[,4],ncol=1) %*% matrix(v[,4],nrow=1)

round(B,2)

[,1] [,2] [,3] [,4] [,5]

[1,] 0.95 0.95 0.5 0.1 0.1

[2,] 0.95 0.95 0.5 0.1 0.1

[3,] 0.50 0.50 1.0 0.5 0.5

[4,] 0.10 0.10 0.5 1.0 0.9

[5,] 0.10 0.10 0.5 0.9 1.0

image(B, zlim=range(A))

title(main = 'Rank 4 approx')

B <- B + l[5] * matrix(v[,5],ncol=1) %*% matrix(v[,5],nrow=1)

round(B,2)

[,1] [,2] [,3] [,4] [,5]

[1,] 1.0 0.9 0.5 0.1 0.1

[2,] 0.9 1.0 0.5 0.1 0.1

[3,] 0.5 0.5 1.0 0.5 0.5

[4,] 0.1 0.1 0.5 1.0 0.9

[5,] 0.1 0.1 0.5 0.9 1.0

image(B, zlim=range(A))

title(main = 'Rank 5 approx')

par(op)

The eigendecomposition is also useful to find matrix inverses, and the power of a
matrix. In fact, it is used to extend the notion of power of a matrix beyond integer
powers:

16

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

True matrix

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

Rank 1 approx

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

Rank 2 approx

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

Rank 3 approx

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

Rank 4 approx

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

Rank 5 approx

Figure 1: A matrix and its approximations using the eigendecomposition

17

Definition 2.1.9 (Power of a symmetric matrix). Let A = EΛET

be a symmetric positive semi-definite p× p matrix with eigenvalues in the
diagonal matrix Λ and orthonormal eigenvectors as columns in E. We
define the k-th power of A by

Ak = EΛkET, k ∈ R

where Λk = diag(λk1, . . . , λ
k
p).

Verify that this definition indeed extends the intuitive definition of the power of a
matrix.

2.2 Singular Value Decompositions, or SVD

Theorem 2.2.1 (Singular value decomposition, or SVD). Any n×p
real matrix X admits a decomposition of the form

X = ULV T, (2.2.1)

where U is an n× n orthogonal matrix, L is a n× p rectangular diagonal
matrix (lij = 0 for i 6= j) and V is a p × p orthogonal matrix. The
decomposition (2.2.1) is called a singular value decomposition (SVD)
of X. The columns of U are called left-singular vectors and the columns of
V right-singular vectors.

Proof. See video.

The liis are called the singular values of X, and they are usually ordered in a
non-increasing order: l11 ≥ l22 ≥ · · · ≥ lrr, where r = min(n, p). Sometimes we will
write li(X) for the largest i-th singular value of X. Simple algebra shows that the
SVD of X can be equivalently expressed as

X =
r∑
i=1

liiuiv
T
i ,

where r = rank(X) and ui and vi are the ith columns in U and V respectively.
This expression is a straightforward extension of the analogous result for the eigen-
decomposition of a symmetric matrix, where the summation is truncated at r =
rank(X) ≤ min{n, p} since lii = 0 for i > r. By convention, l11 ≥ l22 ≥ . . . ≥ 0, so
intuitively one may obtain a low-rank approximation to X by taking the first few
elements in the summation.

The following result gives a direct connection between the SVD of an n×p matrix
X and the eigendecompositions of XXT and XTX.

Proposition 2.2.2 (Link between spectral decomposition and SVD).
Let X be an n× p real matrix.

1. If X = ULV T is a SVD, then the columns of U are eigenvectors of

18

XXT, the columns of V are eigenvectors of XTX, and the corre-
sponding eigenvalues are the square of the diagonal entries of L.

2. If XTX = V ΛV T is an eigendecomposition, then one can give a SVD
of the form X = ULV T, where U contains as columns eigenvectors of
XXT, and L is diagonal with entries the square root of the diagonal
entries of Λ.

This means more or less that (note that the following is not rigorous; try
to understand why):

X = ULV T

XXT = EΛET

XTX = ẼΛ̃ẼT

⇔

U = E

V = Ẽ

(Λ)ii = (Λ̃)ii = (L)2
ii.

Proof. Statement 1 follows from direct calculations. For the second statement, see
proof of Theorem 2.2.1

Notice that by setting Y = XT in point 2. of the Proposition, we get that given
a spectral decomposition of XXT = UΛUT we can construct an SVD of the form
X = ULV T.

The SVD is important, because its truncation provides the best low rank approx-

imation of X. Let ‖X‖F =
√∑

i,j(X)2
ij denote the Frobenius norm of the matrix

X.

Theorem 2.2.3 (Eckart–Young–Mirsky Theorem). Let X be an n×p
real matrix with SVD X = ULV T, and let

Xk =
k∑
i=1

li(X)uiv
T
i .

Then
‖X −Xk‖F ≤ ‖X − A‖F , 1 ≤ k ≤ min(n, p),

for all matrices A with rank at most k.

Proof. See exercises.

An example of application of the Eckart–Young–Mirsky Theorem is to image
compression. An image is matrix of pixels, and each pixel is decomposed as a
proportion of Red, Green, and Blue (RGB) colors. Thus an image can be viewed as
3 matrices of the same size. Conducting an SVD of each of the matrices separately,
truncating the SVD (e.g. to get Xk instead of X), and piecing the approximations
back together to get an image produces a compressed version of the original image.
Figure 2 shows an example of image compression for different truncation levels.

19

load("~/st323/data/pictures.rdata")

img <- images[[1]]

dims <- dim(img); m <- dims[1]; n <- dims[2]

decompositions <- list()

decompositions[[1]] <- svd(img[,,1])

decompositions[[2]] <- svd(img[,,2])

decompositions[[3]] <- svd(img[,,3])

p <- min(m,n)

plot side-by-side the original image and the singular values

op <- par(mai=c(0,0,.2,0), oma=rep(0,4), mfrow=c(3,2))

viewImage(img, main='Original image')

for (k in c(1,4,10,50,100)) {
approximation <- array(0,c(m,n,3))

for (i in 1:3) {
if (k == 1) {
approximation[,,i] <- decompositions[[i]]$d[1]*

decompositions[[i]]$u[,1]%*%t(decompositions[[i]]$v[,1])

} else {
approximation[,,i] <- decompositions[[i]]$u[,1:k]%*%

diag(decompositions[[i]]$d[1:k])%*%t(decompositions[[i]]$v[,1:k])

}
}
rescale the approximation so the values of the image matrix are in [0,1]

maxval <- max(approximation); minval <- min(approximation)

compressedImage <- (approximation - minval)/(maxval - minval)

view the original and compressed image side-by-side

viewImage(compressedImage, main=paste0("Rank ", k, " approximation"))

}
par(op)

2.3 Projection along Vectors, Angles, and Correlation

Let x and y be vectors of the same dimension. The projection of y onto x is defined
to be

z =
xxTy

xTx
= x̃x̃Ty,

where x̃ = x/
√

xTx is the normalized version of x having length 1. The length of
the projection of y onto x is

√
zTz =

√
(yTx)2

(xTx)2
xTx =

|yTx|√
xTx

= |yTx̃|.

20

Original image Rank 1 approximation

Rank 4 approximation Rank 10 approximation

Rank 50 approximation Rank 100 approximation

Figure 2: Compression of a picture of Carl Friedrich Gauss using SVD with different
truncation levels (or low-rank approximation) of the SVD representation.

21

θ x

y

Figure 3: Angle θ between two vectors x and y

Notice that the projection of y onto x depends on the inner-product (or dot
product) x̃Ty of x̃ and y, sometimes also written 〈x̃,y〉. The inner-product x̃Ty
can be thought of as the signed length of z.

If we have a matrix A where each row has unit length, then the vector z = Ay
gives the inner-products (or signed lengths) of the projections of y onto each row
in A. Indeed, notice that A is simply a series of row vectors stacked on top of each
other, hence each element in z represents the inner-product of y and the vector
stored in the corresponding row in A.

An interesting notion closely related to the inner-product between vectors is the
angle between two vectors.

Definition 2.3.1 (Angle between vectors). Let x and y be two vectors
in Rp. The angle between x and y is the value θ such that cos(θ) =

xTy√
xTx
√

yTy
.

Let us verify that this definition makes sense. Notice that this definition is in-
variant to rotations and scalings, i.e. the angle between λRx and γRy is the same
as the angle between x and y, where λ, γ > 0 and R is a rotation matrix (i.e.
RTR = I, det(R) = 1). We can therefore assume that x = (1, 0, . . . , 0)T and
y = (y1, y2, 0, . . . , 0)T such that y2

1 + y2
2 = 1. Then working in the plane spanned by

(1, 0, . . . , 0) and (0, 1, 0, . . . , 0), we can see that the angle φ between x and y satisfies
cos(φ) = y1 = xTy/

√
(xTx)(yTy). Therefore definition 2.3.1 makes sense. Figure 3

illustrates the notion of angle between two vectors.
This notion of angle between vectors is particularly interesting to statisticians.

Suppose now that x = (x1, . . . , xn)T and y = (y1, . . . , yn)T are the observed values
for two random variables, and suppose that we have centered these values so that
the sample means are 0. Then the cosine of the angle between them is given by

xTy√
xTx

√
yTy

=

∑n
i=1 xiyi√∑n

i=1 x
2
i

√∑n
i=1 y

2
i

=
1

n−1

∑n
i=1 xiyi

sxsy
= rxy, (2.3.1)

22

where sx, sy are the sample standard deviations and rxy is the Pearson correlation
coefficient. Hence the Pearson correlation has a geometric interpretation
as the cosine of the angle between the two vectors. Throughout this course
we will see other cases in which there is a duality between algebra and geometry,
and that this can help us interpret statistical procedures.

2.4 Orthogonal Projectors

Later in the module we will be interested in projecting data in Rp into either a small
dimensional space Rd, or into a lower dimensional subspace of Rp. There are various
ways of projecting onto a subspace V ⊂ Rp, but the most useful for us will be the
orthogonal projection, that is the mapping P : Rp → Rp such that 〈Px,y−Py〉 = 0
for all x,y ∈ Rp. Writing P as a matrix, it can be shown that P = PT = P 2, and
we use this as a definition of orthogonal projection:

Definition 2.4.1 (Orthogonal Projector). A p × p matrix P is an
orthogonal projector if PT = P = P 2. The corresponding mapping
Rp → Rp is called an orthogonal projection.

Notice that if B is p × q with BTB = Iq, then BBT is an orthogonal projection
matrix. The following proposition tells us that every orthogonal projection matrix
is of this form:

Proposition 2.4.2 (Characterization of Orthogonal Projectors).
Let P be a p× p orthogonal projector. Then

1. The eigenvalues of P are either 0 or 1,

2. q = Tr(P) ∈ {0, 1, . . . , p},

3. P = BBT for some p× q matrix B satisfying BTB = Iq.

Proof. See video.

The following result, known sometimes as Poincaré’s inequalities, will be useful later
in the Module.

Lemma 2.4.3 (Poincaré’s inequalities). For any p× p orthogonal pro-
jection matrix P ,

λp−q+1(A) + · · ·+ λp(A) ≤ Tr(AP) ≤ λ1(A) + · · ·+ λq(A),

for all p× p symmetric matrices A, where q = Tr(P) and λi(A) is the i-th
largest eigenvalue of A.

Proof. See exercises.

23

2.5 Measuring distances

Many multivariate methods are based on measuring distances between objects in
an appropriate manner. How we measure distance does matter, for instance the
distances between cities in the UK measured in miles can be quite different from
the distances measured in time required to travel between them. Two cities far
away in space could have airports and hence be close in terms of traveling time. Of
course, how to measure distances adequately is application-specific, but there are
some default choices that can be helpful in many scenarios.

Definition 2.5.1 (Distance or Metric). We say that a function d(·, ·) :
Rp×Rp → R, assigning a real value d(x,y) ∈ R to each pair (x,y) ∈ Rp×Rp

is a distance (or metric) if it satisfies the following properties: ∀x,y ∈ Rp,

1. d(x,y) ≥ 0, and d(x,y) = 0 if and only if x = y. (positivity)

2. d(x,y) = d(y,x) (symmetry).

3. d(x,y) ≤ d(x, z) + d(z,y), ∀z ∈ Rp (triangle inequality).

Here are some possible distances:

• Euclidean distance: d(x,y) =
√∑p

i=1(xi − yi)2. The points satisfying d(x,y) =
c lie on a circle. A limitation is that it does not consider that the elements in
x might be on different scales (e.g. if x1 is in millimeters and x2 on kilometers
then x1 will tend to have a higher weight on the Euclidean distance).

• Scaled Euclidean distance: d(x,y) =
√∑p

i=1(xi − yi)2/si, where si > 0 is a
scaling constant such as the pooled variance of xi and yi. The points sat-
isfying d(x,y) = c lie on an ellipse with main axes on the canonical basis.
This distance accounts for differences in scale, but does not consider that the
components in x could be highly correlated.

• Mahalanobis distance: d(x,y) =
√

(x− y)TS−1(x− y), where S is a p × p
PSD matrix. The points satisfying d(x,y) = c lie on an ellipse with general
axes. The Mahalanobis distance sets S to be the covariance matrix (assumed to
be equal for x and y). In that case, zx = S−1/2x can be seen as an uncorrelated
version of x (similarly zy = S−1/2y), and the Mahalanobis distance is simply
the Euclidean distance between zx and zy. Let us see why.

(x− y)TS−1/2S−1/2(x− y) = (S−1/2x− S−1/2y)T(S−1/2x− S−1/2)y =

(zx − zy)
T(zx − zy) =

p∑
i=1

(zxi − zyi)2

The Mahalanobis distance is based on the idea of quadratic forms.

24

Definition 2.5.2 (Quadratic form). A quadratic form in the p variables
x = (x1, . . . , xp)

T is a function Q(x) = xTAx, where A is a p×p symmetric
matrix.

An equivalent way to write the quadratic form isQ(x) =
∑p

i=1 aiix
2
i+2

∑
i<j aijxixj,

which shows that a quadratic form is quite simple: it only contains squared terms
and cross-product terms, with coefficients given by the elements in A.

25

26

3 Basic Exploratory Data Analysis

When you acquire a new dataset, you need to first get a feel for it, before turning
to a formal statistical analysis. This is called Exploratory Data Analysis, or EDA,
and essentially it means that you play with your data. In this section, we explore
basic EDA. Throughout the module, we will illustrate how the new concepts can be
used for EDA.

3.1 Sanity Checks and Univariate Plots

The first things to do with your data is to get some basic summaries of the data,
and understand what each variables are.

#?iris

str(iris)

'data.frame': 150 obs. of 5 variables:

$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...

$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...

$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...

$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...

$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...

summary(iris)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100 setosa :50

1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300 versicolor:50

Median :5.800 Median :3.000 Median :4.350 Median :1.300 virginica :50

Mean :5.843 Mean :3.057 Mean :3.758 Mean :1.199

3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800

Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500

We see that the first 4 variables represent a length/width. Therefore these need
to be positive. Inspection of the minimum value for each variable confirms that
there is no problem with this. The same can be seen via boxplots:

op = par(las=2, mar=c(6,4,4,1))

boxplot(iris[,-5], horiz=T)

par(op)

27

●
●●

●

S
ep

al
.L

en
gt

h

S
ep

al
.W

id
th

P
et

al
.L

en
gt

h

P
et

al
.W

id
th

0

2

4

6

8

However, the boxplots tell us a bit more. In particular, it seems that Petal <
Sepal usually. See Figure 4 to recall what a petal and a sepal are. Now the data
seems a bit odd. . . until we see a picture of an iris setosa (see Figure 5).

Figure 4: Flower parts (taken from Wikipedia)

You can go further and look at histograms of you data, for instance:

28

Figure 5: Iris parts (ref: http://www.lac.inpe.br/~rafael.santos/Docs/R/

CAP394/WholeStory-Iris.html)

hist(iris$Sepal.Length)

Histogram of iris$Sepal.Length

iris$Sepal.Length

F
re

qu
en

cy

4 5 6 7 8

0
5

10
20

30

Since the data is multidimensional, we now turn to more complex visualization
methods. Visualizing high-dimensional data is challenging, not only for the impos-
sibility of plotting more than 3-4 dimensions, but also because of our limitation as
humans to perceive and understand large amounts of information. Here we discuss
some basic plots that can help to get a first impression of what is going in the data.
Later in the course we shall see more advanced techniques.

3.2 Scatterplots

Perhaps the easiest approach is to produce a matrix of bivariate scatterplots. While
these are not truly multivariate plots, they can still be quite helpful in practice.
Assume that your sample is X1, . . . Xn ∈ Rp, for instance here X1 = (x11, . . . , x14) is
the vector of width and length of sepal and petal of flower 1 (we omit the name of
the species here). You create a new plot consisting of a 4 × 4 grid of plots. In plot

29

http://www.lac.inpe.br/~rafael.santos/Docs/R/CAP394/WholeStory-Iris.html
http://www.lac.inpe.br/~rafael.santos/Docs/R/CAP394/WholeStory-Iris.html

Sepal.Length

2.
0

3.
0

4.
0

●

●

●
●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●
●

●

●
●
●

●
●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●●●

●

●
●

●

●

●

●

●

●●●
● ●

●
● ●● ● ●●

●
● ●

●
●●

●
●

●
●

●

●
●

●●●●
●● ●● ●●

● ●●●
●

●●●
●
●

●
●

● ●●

●
●

●

●

●●
●

●

●

●
●

●
●

●

●

●●
●

●

●

●

●

●
●

●●
●

●

●

●
●●

●

●

● ●
●

●
●●

●
●

●

●

●●● ●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●●
●
●

●
●

●

●

●

●

●

●
●

●●

●
●

●
●

●

●

●

●

●●

●

●
●

●●

●
●

●
●

●
●

●

4.5 5.5 6.5 7.5

0.
5

1.
5

2.
5

●●●● ●

●
●

●●
●

●●
●●

●

●●
● ●●

●

●

●

●

●●

●

●●●●

●

●
●●● ●

●
● ●

●●
●

●

●
●

●● ●●

●
● ●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●
●
●

●

●
●

●
●

●●●
●

●

●

●

●
●
● ●

●

●

●

●

●

●

●
●

●
●●

●

●
●

●
●

●
●

●

●
●

●

●

● ●

●

●

●●●

●

●

●
●

●

●
●

●
●

●●

●

●
●

●

●

●

●

●
●

●

●

2.0 3.0 4.0

●
●

●●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●
● ●

●●

●●

●
●

●

●●

●

●

●

●●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●● ●

●

●

●
●

●

●

●
●

●
●

●
●

● ●

●

●
●●

●
●

●

●

●

●

●●●

●

●

●

● ●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

● ●

●●

●●

●

●

●

●

●

●

●

● ●

●

●
●

●

●●
●

●

●●

●

●
●
●

●

●●●

●
●

●

●

Sepal.Width

●● ●
● ●

●
●●● ● ●●

●
● ●

●
●●

●
●

●
●

●

●
●

● ●●●
●● ● ●●●
● ●●●

●
●● ●
●

●

●
●

● ●●

●
●

●

●

●●
●

●

●

●
●

●
●

●

●

●●
●

●

●

●

●

●
●

●●
●

●

●

●
●●

●

●

● ●
●

●
●●

●
●

●

●

● ●●●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

● ●
●

●

●
●

●

●

●

●

●

●
●

● ●

●
●

●
●

●

●

●

●

●●

●

●
●

●●

●
●

●
●

●
●

●

●● ●● ●

●
●
●●

●
●●

●●
●

●●
● ●●

●

●

●

●

●●

●

●●●●

●

●
●●● ●

●
● ●

●●
●

●

●
●

●● ●●

●
●●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●
●
●

●

●
●

●
●

● ●●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●
●●

●

●
●

●
●

●
●

●

●
●

●

●

●●

●

●

●● ●

●

●

●
●

●

●
●

●
●

●●

●

●
●

●

●

●

●

●
●

●

●

●
●
●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●●
●●

●●

●
●

●

●●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●● ●

●

●

●
●

●

●

●
●

●
●

●
●

●●

●

●
●●

●
●

●

●

●

●

●● ●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●●
●

●

●●

●

●
●

●

●

●●●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●
●

●

●
●
●

●
●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●●
●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●
●

●

●
●

●

●●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●
●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●●●

●

●
●

●

●

●

●

●

Petal.Length

1 2 3 4 5 6 7

●●●●●

●
●
●●
●
●●
●●

●

●●
●●●

●

●

●

●

●●

●

●●●●

●

●
●●●●
●
●●
●●
●

●

●
●
●●●●

●
● ●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●
● ●

●

●

●
●
●

●

●
●
●
●

●●●
●

●

●

●

●
●
●●

●

●

●

●

●

●

●
●

●
●●

●

●
●

●
●

●
●

●

●
●

●

●

● ●

●

●

●●●

●

●

●
●

●

●
●

●
●

●●

●

●
●

●

●

●

●

●
●

●

●

0.5 1.5 2.5

4.
5

5.
5

6.
5

7.
5

●
●
●●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●
● ●
●●

●●

●
●

●

●●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●● ●

●

●

●
●

●

●

●
●

●
●

●
●
● ●

●

●
●●

●
●

●

●

●

●

●●●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

● ●

●●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●●
●

●

●●

●

●
●

●

●

● ●●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●
●

●

●
●
●

●
●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

● ●●

●

●
●

●

●

●

●

●

1
2

3
4

5
6

7

●●●
●●

●
●●●●●●●

●●
●
●●

●
●

●
●

●

●
●
● ●●●
●● ●●●●
●●

●●
●

●●●
●

●

●
●
●●●

●
●
●

●

●●
●

●

●

●
●

●
●

●

●

●●
●

●

●

●

●

●
●

●●
●

●

●

●
●●

●

●

●●
●

●
●●

●
●

●

●

●●●●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

● ●
●

●

●
●

●

●

●

●

●

●
●

●●

●
●

●
●

●

●

●

●

●●

●

●
●

●●

●
●

●
●

●
●

●

Petal.Width

Figure 6: Anderson’s iris data. Colors indicate the 3 species

(i, j), you will draw the n points (xli, xlj)l=1,...,n, one for each observation in your
sample. If you have an additional categorical variable for each observation (here the
iris species), you can color-code it and color each point accordingly.

col <- 1+as.numeric(factor(iris[,5]))

plot(iris[,1:4],col=col)

#pairs(iris[,1:4],col=col) ## gives the same result

Figure 6 shows an example for Anderson’s iris data, which contains 4 continuous
variables and a categorical variable indicating the flower species. Each individual
scatterplot reveals information regarding 3 variables (the two axis plus the group
labels), and reveals some of the structure in the data.

30

Sepal.Length

Sepal.Width

Petal.Length

Figure 7: Star plot of the Iris dataset, colored by species

3.3 Star plots

Star plots display, for each individual, segments emanating from a central point.
The length of each segment indicates the value of an individual variable.

require(grDevices)

stars(iris[,-5], col.stars=col, key.loc = c(20, 0))

We see clearly in Figure 7 the difference between the “red” species and the other
species.

Let’s see another example with a dataset measuring 7 continuous (horse power,
miles per gallon etc.) and 4 discrete variables for 32 different cars. This dataset is
called mtcars, and Figure 8 shows the related star plots.

31

str(mtcars)

'data.frame': 32 obs. of 11 variables:

$ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...

$ cyl : num 6 6 4 6 8 6 8 4 4 6 ...

$ disp: num 160 160 108 258 360 ...

$ hp : num 110 110 93 110 175 105 245 62 95 123 ...

$ drat: num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...

$ wt : num 2.62 2.88 2.32 3.21 3.44 ...

$ qsec: num 16.5 17 18.6 19.4 17 ...

$ vs : num 0 0 1 1 0 1 0 1 1 1 ...

$ am : num 1 1 1 0 0 0 0 0 0 0 ...

$ gear: num 4 4 4 3 3 3 3 4 4 4 ...

$ carb: num 4 4 1 1 2 1 4 2 2 4 ...

summary(mtcars)

mpg cyl disp hp drat

Min. :10.40 Min. :4.000 Min. : 71.1 Min. : 52.0 Min. :2.760

1st Qu.:15.43 1st Qu.:4.000 1st Qu.:120.8 1st Qu.: 96.5 1st Qu.:3.080

Median :19.20 Median :6.000 Median :196.3 Median :123.0 Median :3.695

Mean :20.09 Mean :6.188 Mean :230.7 Mean :146.7 Mean :3.597

3rd Qu.:22.80 3rd Qu.:8.000 3rd Qu.:326.0 3rd Qu.:180.0 3rd Qu.:3.920

Max. :33.90 Max. :8.000 Max. :472.0 Max. :335.0 Max. :4.930

wt qsec vs am gear

Min. :1.513 Min. :14.50 Min. :0.0000 Min. :0.0000 Min. :3.000

1st Qu.:2.581 1st Qu.:16.89 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:3.000

Median :3.325 Median :17.71 Median :0.0000 Median :0.0000 Median :4.000

Mean :3.217 Mean :17.85 Mean :0.4375 Mean :0.4062 Mean :3.688

3rd Qu.:3.610 3rd Qu.:18.90 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:4.000

Max. :5.424 Max. :22.90 Max. :1.0000 Max. :1.0000 Max. :5.000

carb

Min. :1.000

1st Qu.:2.000

Median :2.000

Mean :2.812

3rd Qu.:4.000

Max. :8.000

stars(mtcars[, 1:7], key.loc = c(14, 2), main = "Motor Trend Cars :

stars(*, full = F)", full = FALSE)

An obvious limitation with star plots is that when either the number of individ-
uals or the number of variables grows the plot gets cluttered and hard to interpred.
Another limitation is that the order in which we decide to plot the variables can
change the final appearance of the plot.

32

Motor Trend Cars : stars(*, full = F)

Mazda RX4
Mazda RX4 Wag

Datsun 710
Hornet 4 Drive

Hornet Sportabout
Valiant

Duster 360
Merc 240D

Merc 230
Merc 280

Merc 280C
Merc 450SE

Merc 450SL
Merc 450SLC

Cadillac Fleetwood
Lincoln Continental

Chrysler Imperial
Fiat 128

Honda Civic
Toyota Corolla

Toyota Corona
Dodge Challenger

AMC Javelin
Camaro Z28

Pontiac Firebird
Fiat X1−9

Porsche 914−2
Lotus Europa

Ford Pantera L
Ferrari Dino

Maserati Bora
Volvo 142E mpg

cyl
disp

hp
drat

wt

qsec

Figure 8: Star plot for mtcars dataset

33

setosa setosa setosa setosa setosa setosa

setosa setosa setosa setosa setosa setosa

versicolor versicolor versicolor versicolor versicolor versicolor

versicolor versicolor versicolor versicolor versicolor versicolor

virginica virginica virginica virginica virginica virginica

Figure 9: Chernoff faces for a subsample of the iris dataset

3.4 Chernoff faces

Chernoff faces are a fun alternative to starplots. They too plot each individual
separately, but here each characteristic of the face is associated to a separate variable,
and its size indicates its value.

library(TeachingDemos)

ii = sort(sample(nrow(iris), 30))

faces2(iris[ii,-5], labels=iris[ii,5])

library(TeachingDemos)

faces2(mtcars[,1:7])

34

Mazda RX4 Mazda RX4 Wag Datsun 710 Hornet 4 Drive Hornet Sportabout Valiant

Duster 360 Merc 240D Merc 230 Merc 280 Merc 280C Merc 450SE

Merc 450SL Merc 450SLC Cadillac Fleetwood Lincoln Continental Chrysler Imperial Fiat 128

Honda Civic Toyota Corolla Toyota Corona Dodge Challenger AMC Javelin Camaro Z28

Pontiac Firebird Fiat X1−9 Porsche 914−2 Lotus Europa Ford Pantera L Ferrari Dino

Maserati Bora Volvo 142E

Figure 10: Chernoff faces for the mtcars dataset, the features are: 1 Width of center
2 Top vs. Bottom width (height of split) 3 Height of Face 4 Width of top half of
face 5 Width of bottom half of face 6 Length of Nose 7 Height of Mouth.

35

For Figure 10, the value of the first variable is reflected in the width of the center
of the face. The value of the second variable in the top vs. bottom width, the third
variable in the height of the face etc.

As with star plots, Chernoff faces get messy when presenting more than a few
individuals or variables, and the plot can look quite different depending on how we
order the variables. In spite of these limitations, Chernoff faces are an example
of using pictograms to represent multivariate data in an amenable dataset. For
instance, in order to represent several characteristics of fruit (colour, size, weight)
one could plot fruit pictures which reflect the desired characteristics. As another
example, one could display basic medical data such as height, weight, gender and
blood pressure using pictures of humans. These plots are sometimes seen in posters
presented in scientific conferences, as they help attract the attention of the audience.

As a historical note, Chernoff faces were invented by Herman Chernoff, a math-
ematician, statistician and physicist who was at MIT and Harvard. He is rumoured
to lament that, in spite of his many serious research contributions, he is most famous
for his faces plot.

3.5 Andrews curves

The idea behind Andrews curves is to represent each individual as a function (or
curve), such that each curve uniquely represents the value of a set of variables
x = (x1, . . . , xp)

T. The Andrews curve is obtained by calculating the function

fx(t) = x1/
√

2 + x2 sin(t) + x3 cos(t) + x4 sin(2t) + x5 cos(2t) + · · ·+ xpep(t),

and plotting this function over the range t ∈ [−π, π], where ep(t) = cos((p− 1)t/2)
if p is odd, and ep(t) = sin(pt/2) if p is even. In this manner, each observation will
appear as a separate curve in the plot.

Those mathematically inclined will recognize that the curve simply corresponds
to a discrete Fourier transform. Some important properties of Andrews curves are:

1. There is a one-to-one correspondence between x and fx(t). As a consequence,
the curves for x1 and x2 will be equal if and only if x1 = x2.

2. The Euclidean distance between two observations x1,x2 is directly propor-
tional to the distance between their corresponding curves, which is measured
as √∫ π

−π
(fx1(t)− fx2(t))

2dt.

That is, whenever two curves are similar for all t then their corresponding x
values are also similar to each other.

3. The functions reflect the variance in the data. When the variables are uncor-
related with common variance σ2 and the number of variables p is odd, then
the variance of the functions at t is directly proportional to σ2 for any value of
t. When p is even, the variance depends slightly on t but always lies between
1
2
σ2(p − 1) and 1

2
σ2(p + 1). In practice, what this property means is that by

36

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Figure 11: Andrews curves for Anderson’s iris dataset. Each curve corresponds to
a different individual, and colors indicate the 3 species.

looking at the variability of the functions for any value of t we can get an idea
of the variance of the variables in x.

library(andrews)

andrews(iris[,1:5], clr=5, ymax=3)

Notice that in Figure 11, we can see that the three species are separated in terms
of their x values. In fact, the species shown in red shows a clear separation (this
was also apparent in the scatterplots in Figure 6), and seems to have lower overall
variability, indicating that the individuals from this species are quite similar to each
other.

37

−3 −2 −1 0 1 2 3

−
4

−
2

0
2

4

Figure 12: Andrews curves for mtcars dataset. Each curve corresponds to one car.
The color indicates whether the car is an automatic or not.

andrews(mtcars[,c(1:7, 9)], clr=8, ymax=5)

In Figure 12, we see a clear difference between automatic and manual transmis-
sion cars at the left of the curves.

3.6 High-dimensional datasets

For high-dimensional datasets, we cannot plot pairs plots, Chernoff faces, or An-
drews curves. As an example, let’s try to do a pairs plot for 7 variables. The result
is in Figure 13. We are still able to see something, but we are at the limit. If we
had 20 variables, we’d get a plot like Figure 14. Now we really see nothing. . .

Let us give an example of a high-dimensional dataset. The dataset ZIP code,
available at https://web.stanford.edu/~hastie/ElemStatLearn/, contains im-
ages (16× 16 pixels) of handwritten digits, along with a label telling us which digit
this corresponds to. Here is a quick look at the data structure:

library(magrittr)

zip_code <- read.table("~/st323/data/zip.train")

download at https://web.stanford.edu/~hastie/ElemStatLearn/ or on the Moodle

is.data.frame(zip_code)

[1] TRUE

dim(zip_code)

[1] 7291 257

38

https://web.stanford.edu/~hastie/ElemStatLearn/

mpg

4
6

8

●●

●

●

●

●

●

●●

●●

●●●●● ●

●●●●

●●● ●

●● ●

●

●

●

●

●●
●

●

●

●

●

●●
●●

●●●

●● ●

●●●
●

●●
●

●

●
● ●

●

●

●

●

50
20

0

●●●●

●

●

●

●
●

●●

●●●
●●

●

●●●
●

●●

●

●

●
●

●

●

●

●

●

●●●

●●

●

●

●
●●●

●●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

2
4

●
●
●

●●●●
●●

●●

●
●●

●● ●

●
●●

●

●●
● ●

●●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●●
●●● ●

●
●

●●

●●

●

●

●

● ●

●
●

●

●

0.
0

0.
6

●●

●●

●

●

●

●●●●

●●●●● ●

●●●●

●●● ●

●

●

●

● ●●

●

●●●

●●●● ●●●●●●●●● ●

●●●

●●●● ●

●● ●● ●● ●

10 25

3.
0

4.
0

5.
0

●●●

●●●●

●●●●

●●●●● ●

●●●

●●●● ●

●

● ●● ●●

●

4 6 8

●●
● ●

●●

●

●
●

●● ●●●

●●

●

●
●
●

●

●●
●

●

●●

●

●

●

●

●

cyl

●●
●

●

●

●

●

●●
●●

●●●

●●●

●●●
●

●●
●
●

●
●●

●

●

●

●

●●● ●

●

●

●

●
●

●●

●●●
●●
●

●●●
●

●●

●

●

●
●
●

●

●

●

●

●●●

● ●

●

●

●
● ●●

●●●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

● ●● ●
●●

●●

●
●●

●●●

●
●●

●

●●
●●

●●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●●
●●●●

●
●

●●

●●

●

●

●

●●

●
●

●

●

●●

● ●

●

●

●

●● ●●

●●●●●●

●●●●

●●●●

●

●

●

●● ●

●

●●●

● ●● ●●● ●● ●●●●●●

●●●

● ●●●●

●●● ●● ●●

●●●

● ●● ●

●● ●●

●●●●●●

●●●

● ●●●●

●

●● ●● ●

●

●●
● ●

●●

●

●
●
●● ●●●

●●

●

●
●
●

●

●●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●●● ●●●

●●●●

●●●●

●●●

●

●

●

●

disp

●●● ●

●

●

●

●
●
●●

●●●
●●

●

●●●
●

●●

●

●

●
●

●

●

●

●

●

●●●

● ●

●

●

●
●●●

●●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

● ●● ●
●●
●●

●
●●

●●●

●
●●

●

●●
●●

●●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●●
● ●●●

●
●

●●

●●

●

●

●

●●

●
●

●

●

●●

● ●

●

●

●

●●●●

●●● ●●●

●●●●

●●●●

●

●

●

●● ●

●

●●●

● ●● ●●●●● ●●● ●●●

●●●

● ●●●●

●●● ●● ●●

100 400

●●●

● ●● ●

●●●●

●●● ●●●

●●●

● ●●●●

●

●● ●● ●

●

50 250

●●
●●

●●

●

●
●

●● ●●●

●●

●

●
●
●

●

●●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●●●●●●

●●●●

●● ●●

●●●

●

●

●

●

●●
●

●

●

●

●

●●
●●

●●●

●●●

●●●
●

●●
●

●

●
●●

●

●

●

●

hp

●●●

● ●

●

●

●
●●●

●●●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

● ●● ●
●●

●●

●
●●

●●●

●
●●

●

●●
●●

●●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●●
●●●●

●
●

●●

●●

●

●

●

●●

●
●

●

●

●●

●●

●

●

●

●●●●

●●●●●●

●●●●

●● ●●

●

●

●

●● ●

●

●●●

● ●● ●●●●● ●●●●●●

●●●

● ●● ●●

●●● ●● ●●

●●●

● ●● ●

●●●●

●●●●●●

●●●

● ●● ●●

●

●● ●● ●

●

●●
●●

●●

●

●
●
●●●●●

●●

●

●
●

●

●

● ●
●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●●●●●●

● ●●●

● ● ●●

● ●●

●

●

●

●

●●
●

●

●

●

●

●●
●●

●●●

●●●

● ●●
●

● ●
●

●

●
●●

●

●

●

●

●●●●

●

●

●

●
●
●●

●●●
●●

●

● ●●
●

● ●

●

●

●
●

●

●

●

●

●

drat

●
●
●

●●● ●
●●

●●

●
●●

●●●

●
●●

●

● ●
●●

● ●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●●
●●●●

●
●

●●

● ●

●

●

●

●●

●
●
●

●

●●

●●

●

●

●

●●●●

●●●●●●

● ●●●

● ● ●●

●

●

●

●●●

●

●●●

●●● ● ●●●●●●●●●●

● ●●

●● ● ●●

● ●● ●●● ●

3.0 4.5

●●●

●●● ●

●●●●

●●●●●●

● ●●

●● ● ●●

●

●● ●●●

●

2 4

●●
● ●

●●

●

●
●
●● ●●
●

●●

●

●
●
●

●

●●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●●● ●●●

●●● ●

●●●●

●●●

●

●

●

●

●●
●

●

●

●

●

●●
●●

●●●

●●●

●●●
●

●●
●
●

●
●●

●

●

●

●

●●● ●

●

●

●

●
●
●●

●●●
●●
●

●●●
●

●●

●

●

●
●

●

●

●

●

●

●●●

●●

●

●

●
●●●

●●●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

wt

●
●

●
●

●

●

●

●

●

●
●

●●● ●●●

●
●

● ●

●●

●

●

●

●●

●
●

●

●

●●

● ●

●

●

●

●●●●

●●● ●●●

●●● ●

●●●●

●

●

●

●● ●

●

●●●

●●●●●●●● ●●● ●●●

●●●

● ●●●●

●●● ●● ●●

●●●

●●●●

●●●●

●●● ●●●

●●●

● ●●●●

●

●● ●● ●

●

●●
●●

● ●

●

●
●

●●●●●

●●

●

●
●

●

●

●●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●●

●●●●●●

●● ●●

●●● ●

●●●

●

●

●

●

●●
●

●

●

●

●

● ●
●●

●●●

●●●

●● ●
●

●●
●

●

●
●●

●

●

●

●

●● ●●

●

●

●

●
●

●●

●●●
●●

●

●● ●
●

●●

●

●

●
●
●

●

●

●

●

●● ●

●●

●

●

●
●●●

●●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●● ●●
● ●

●●

●
●●

●●●

●
● ●

●

●●
● ●

●●

●

●
●

●

●

qsec

●●

●●

●

●

●

● ●●●

●●●●●●

●● ●●

●●● ●

●

●

●

●●●

●

●● ●

●● ●● ● ●●●●●●●●●

●● ●

●●●● ●

●●●●●● ●

16 22

●● ●

●● ●●

● ●●●

●●●●●●

●● ●

●●●● ●

●

●●●●●

●

0.0 0.6

●●
●●

● ●

●

●
●
●●●●●

●●

●

●
●
●

●

●●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●●●●●●

●●●●

●●●●

●● ●

●

●

●

●

●●
●

●

●

●

●

●●
●●

●●●

●●●

●●●
●

●●
●
●

●
● ●

●

●

●

●

●● ●●

●

●

●

●
●
●●

●●●
●●
●

●●●
●

●●

●

●

●
●

●

●

●

●

●

●● ●

●●

●

●

●
●●●

●●●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●● ●●
●●
●●

●
●●

●●●

●
●●

●

●●
●●

●●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●●
●●●●

●
●

●●

●●

●

●

●

● ●

●
●
●

●

vs

●● ●

●● ●● ●●●●●●●●●●

●●●

●●●●●

●● ●●●● ●

●● ●

●● ●●

●●●●

●●●●●●

●●●

●●●●●

●

● ●●●●

●

●●
●●

●●

●

●
●
●●●●●

●●

●

●
●
●

●

●●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●●●●●●

●●●●

●●●●

●●●

●

●

●

●

●●
●

●

●

●

●

●●
●●

●●●

●●●

●●●
●

●●
●
●

●
●●

●

●

●

●

●●●●

●

●

●

●
●
●●

●●●
●●
●

●●●
●

●●

●

●

●
●
●

●

●

●

●

●●●

●●

●

●

●
●●●

●●●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●●●
●
●●
●●

●
●●

●●●

●
●●

●

●●
●●

●●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●●
●●●●

●
●

●●

●●

●

●

●

●●

●
●
●

●

●●

●●

●

●

●

●●●●

●●●●●●

●●●●

●●●●

●

●

●

●●●

●

am

0.0 0.6

●●●

●●●●

●●●●

●●●●●●

●●●

●●●●●

●

●●●●●

●

3.0 4.5

10
20

30

●●
●●

●●

●

●
●
●●●●●

●●

●

●
●
●

●

●●
●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●●●●●●

●●●●

●●●●

● ●●

●

●

●

●

10
0

40
0

●●
●

●

●

●

●

●●
●●

●●●

●●●

●●●
●

●●
●
●

●
●●

●

●

●

●

●●●●

●

●

●

●
●
●●

●●●
●●
●

●●●
●

●●

●

●

●
●
●

●

●

●

●

3.
0

4.
5

●●●

●●

●

●

●
●●●

●●●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●●●
●

●●
●●

●
●●

●●●

●
●●

●

●●
●●

● ●

●

●
●

●

●

16
20

●
●

●
●

●

●

●

●

●

●
●

●●
●●●●

●
●

●●

●●

●

●

●

●●

●
●
●

●

●●

●●

●

●

●

●●●●

●●●●●●

●●●●

●●●●

●

●

●

●●●

●

0.
0

0.
6

●●●

●●●● ●●●●●●●●●●

●●●

●●●●●

● ●●●●●●

gear

Figure 13: Pairs plot for 10 variables of mtcars

39

mpg

4
8

●●

●

●

●

●

●

●●

●●

●●●●●●

●●●●

●●●●

●●●

●

●

●

●

●●●
●
●
●

●

●●●●
●●●

●●●

●●●●

●●●
●

●●●

●

●
●

●

50

●●●●
●
●

●

●●
●●
●●●●●●

●●●●
●●
●

●
●●
●

●
●

●

●

●●●
●●●

●
●●●●

●●●●●●
●
●
●

●

●
●
●

●

●●●
●
●●
●

2 ●●●
●●●● ●●●●

●●●
●●●

●●●
●

●●●●

●●●

●●
●

●

●●
●●

●
●

●

●
●

●●●●●●●●
●●●

●
●●
●

●
●
●●

●●●

●

0.
0

●●

●●

●

●

●

●●●●

●●●●●●

●●●●

●●●●

●

●

●

●●●

●

●●●

●●●● ●●●●●●●●●●

●●●

●●●●●

●●●●●●●

3.
0 ●●●

●●●●

●●●●

●●●●●●

●●●

●●●●●

●

●●●●●

●

●●●●●●●

●●●●●●●
●●
●

●●●

●
●●●
●

●●
●

●
●

●
●

4
8

●●

●

●

●

●

●

●●

●●

●●●●●●

●●●●

●●●●

●●●

●

●

●

●

●●●
●
●
●

●

●●●●
●●●

●●●

●●●●

●●●
●

●●●

●

●
●

●

50

●●●●
●
●

●

●●
●●
●●●●●●

●●●●
●●
●

●
●●
●

●
●

●

●

●●●
●●●

●
●●●●

●●●●●●
●
●
●

●

●
●
●

●

●●●
●
●●
●

2 ●●●
●●●● ●●●●

●●●
●●●

●●●
●

●●●●

●●●

●●
●

●

●●
●●

●
●

●

●
●

●●●●●●●●
●●●

●
●●
●

●
●
●●

●●●

●

0.
0

●●

●●

●

●

●

●●●●

●●●●●●

●●●●

●●●●

●

●

●

●●●

●

●●●

●●●● ●●●●●●●●●●

●●●

●●●●●

●●●●●●●

10

3.
0 ●●●

●●●●

●●●●

●●●●●●

●●●

●●●●●

●

●●●●●

●

4

●●● ● ●● ●

●● ●● ●●●
●●
●

●●●

●
●●●
●

●●
●

●
●

●
●

cyl

●●●
●

●
●

●

●● ●●
●●●

●●●

●●●●

●●●
●

●●●

●

●
●

●

●●● ●
●

●

●

●●
●●

●●●●●
●

●●●●
●●
●
●

●●
●

●
●

●

●

●●●
● ●
●

●
●● ●●

●●●●●●
●
●
●
●

●
●
●
●

●●●
●

● ●
●

●●●
● ●● ●●● ●● ●●●

●●●

●●●
●

●●●●

●●●

●●
●

●

●●
● ●

●
●

●

●
●

●● ●●●●●●
●●●
●

●●
●
●

●
●●

●● ●

●

●●

● ●

●

●

●

●● ●●

●●●●●●

●●●●

●●●●

●

●

●

●● ●

●

●●●

● ●● ●●● ●● ●●●●●●

●●●

● ●●●●

●●● ●● ●●

●●●

● ●● ●

●● ●●

●●●●●●

●●●

● ●●●●

●

●● ●● ●

●

●●● ● ●● ●

●● ●● ●●●
●●
●

●●●

●
●●●
●

●●
●

●
●

●
●

●●

●

●

●

●

●

●●

●●

●●●●●●

●●●●

●●●●

●●●

●

●

●

●

●●●
●

●
●

●

●● ●●
●●●

●●●

●●●●

●●●
●

●●●

●

●
●

●

●●● ●
●

●

●

●●
●●

●●●●●
●

●●●●
●●
●
●

●●
●

●
●

●

●

●●●
● ●
●

●
●● ●●

●●●●●●
●
●
●
●

●
●
●
●

●●●
●

● ●
●

●●●
● ●● ●●● ●● ●●●

●●●

●●●
●

●●●●

●●●

●●
●

●

●●
● ●

●
●

●

●
●

●● ●●●●●●
●●●
●

●●
●
●

●
●●

●● ●

●

●●

● ●

●

●

●

●● ●●

●●●●●●

●●●●

●●●●

●

●

●

●● ●

●

●●●

● ●● ●●● ●● ●●●●●●

●●●

● ●●●●

●●● ●● ●●

●●●

● ●● ●

●● ●●

●●●●●●

●●●

● ●●●●

●

●● ●● ●

●

●●●●●●●

●●●●●●●
●●
●

●●●

●
●●●
●

●●
●

●
●

●
●

●●

●

●

●

●

●

●●

●●

●●● ●●●

●●●●

●●●●

●●●

●

●

●

●

disp

●●●●
●

●

●

●●
●●

●●● ●●●

●●●●
●●
●
●

●●
●

●
●

●

●

●●●
●●
●

●
●●●●

●●● ●●●
●
●
●
●

●
●
●
●

●●●
●

●●
●

●●●
●●●●●●●●
●●●

●●●

●●●
●

●●●●

●●●

●●
●

●

●●
●●

●
●

●

●
●

●●●●● ●●●
●●●
●

●●
●
●

●
●●

●●●

●

●●

●●

●

●

●

●●●●

●●● ●●●

●●●●

●●●●

●

●

●

●●●

●

●●●

●●●●●●●●●●● ●●●

●●●

● ●●●●

●●● ●●●●

●●●

●●●●

●●●●

●●● ●●●

●●●

● ●●●●

●

●● ●●●

●

●●●●●●●

●●●●●●●
●●
●

●●●

●
●●●
●

●●
●

●
●

●
●

●●

●

●

●

●

●

●●

●●

●●● ●●●

●●●●

●●●●

●●●

●

●

●

●

●●●
●

●
●

●

●●●●
●●●

●●●

●●●●

●●●
●

●●●

●

●
●

●

●●●●
●

●

●

●●
●●

●●● ●●●

●●●●
●●
●
●

●●
●

●
●

●

●

●●●
●●
●

●
●●●●

●●● ●●●
●
●
●
●

●
●
●
●

●●●
●

●●
●

●●●
●●●●●●●●
●●●

●●●

●●●
●

●●●●

●●●

●●
●

●

●●
●●

●
●

●

●
●

●●●●● ●●●
●●●
●

●●
●
●

●
●●

●●●

●

●●

●●

●

●

●

●●●●

●●● ●●●

●●●●

●●●●

●

●

●

●●●

●

●●●

●●●●●●●●●●● ●●●

●●●

● ●●●●

●●● ●●●●

100

●●●

●●●●

●●●●

●●● ●●●

●●●

● ●●●●

●

●● ●●●

●

50

●●●●●● ●

●●●●●●●
●●
●

●●●

●
●●●
●

●●
●

●
●

●
●

●●

●

●

●

●

●

●●

●●

●●●●●●

●●●●

●●●●

●●●

●

●

●

●

●●●
●
●

●
●

●●●●
●●●

●●●

●●●●

●●●●

●●●

●

●
●

●

hp

●●●
●●
●

●
●●●●

●●●●●●
●
●
●
●

●
●

●
●

●●●
●

● ●
●

●●●
●●● ●●●●●
●●●
●●●

●●●
●
●●●●

●●●

●●
●

●

●●
●●

●
●

●

●
●

●●●●●●●●
●●●
●
●●

●
●

●
●●

●● ●

●

●●

●●

●

●

●

●●●●

●●●●●●

●●●●

●●●●

●

●

●

●● ●

●

●●●

●●● ●●●●●●●●●●●

●●●

●●●●●

●●● ●● ●●

●●●

●●● ●

●●●●

●●●●●●

●●●

●●●●●

●

●● ●● ●

●

●●●●●● ●

●●●●●●●
●●
●

●●●

●
●●●
●

●●
●

●
●

●
●

●●

●

●

●

●

●

●●

●●

●●●●●●

●●●●

●●●●

●●●

●

●

●

●

●●●
●
●

●
●

●●●●
●●●

●●●

●●●●

●●●●

●●●

●

●
●

●

●●●●
●

●

●

●●
●●
●●●●●
●

●●●●
●●

●
●

●●
●

●
●

●

●

●●●
●●
●

●
●●●●

●●●●●●
●
●
●
●

●
●

●
●

●●●
●

● ●
●

●●●
●●● ●●●●●
●●●
●●●

●●●
●
●●●●

●●●

●●
●

●

●●
●●

●
●

●

●
●

●●●●●●●●
●●●
●
●●

●
●

●
●●

●● ●

●

●●

●●

●

●

●

●●●●

●●●●●●

●●●●

●●●●

●

●

●

●● ●

●

●●●

●●● ●●●●●●●●●●●

●●●

●●●●●

●●● ●● ●●

●●●

●●● ●

●●●●

●●●●●●

●●●

●●●●●

●

●● ●● ●

●

●●●●●●●

●●●●●●●
●●
●

●●●

●
●●●
●

●●
●

●
●
●

●

●●

●

●

●

●

●

●●

●●

●●●●●●

●●●●

●●●●

●●●

●

●

●

●

●●●
●
●

●
●

●●●●
●●●

●●●

●●●●

●●●●

●●●

●

●
●

●

●●●●
●

●

●

●●
●●

●●●●●
●

●●●●
●●

●
●

●●
●

●
●

●

●

drat

●●●
●●●●●●●●
●●●
●●●

●●●●
●●●●

●●●

●●
●

●

●●
●●

●
●

●

●
●

●●●●●●●●
●●●●

●●
●

●
●
●●
●●●

●

●●

●●

●

●

●

●●●●

●●●●●●

●●●●

●●●●

●

●

●

●●●

●

●●●

●●●●●●●●●●●●●●

●●●

●●●●●

●●●●●●●

●●●

●●●●

●●●●

●●●●●●

●●●

●●●●●

●

●●●●●

●

●●●●●●●

●●●●●●●
●●
●

●●●

●
●●●
●

●●
●

●
●
●

●

●●

●

●

●

●

●

●●

●●

●●●●●●

●●●●

●●●●

●●●

●

●

●

●

●●●
●
●

●
●

●●●●
●●●

●●●

●●●●

●●●●

●●●

●

●
●

●

●●●●
●

●

●

●●
●●

●●●●●
●

●●●●
●●

●
●

●●
●

●
●

●

●

●●●
●●●
●
●●●●

●●●●●●
●

●
●

●

●
●

●
●

●●●
●

●●
●

●●●
●●●●●●●●
●●●
●●●

●●●●
●●●●

●●●

●●
●

●

●●
●●

●
●

●

●
●

●●●●●●●●
●●●●

●●
●

●
●
●●
●●●

●

●●

●●

●

●

●

●●●●

●●●●●●

●●●●

●●●●

●

●

●

●●●

●

●●●

●●●●●●●●●●●●●●

●●●

●●●●●

●●●●●●●

3.0

●●●

●●●●

●●●●

●●●●●●

●●●

●●●●●

●

●●●●●

●

2

●●●●●●●

●●●●●●●
●●
●

●●●

●
●●●
●

●●
●

●
●
●

●

●●

●

●

●

●

●

●●

●●

●●●●●●

●●●●

●●●●

●●●

●

●

●

●

●●●
●
●
●
●

●●●●
●●●

●●●

●●●●

●●●
●

●●●

●

●
●

●

●●●●
●
●

●

●●
●●
●●●●●●

●●●●
●●
●
●

●●
●

●
●

●

●

●●●
●●●
●
●●●●
●●●●●●

●
●
●
●

●
●
●
●

●●●
●
●●
●

wt

●●
●●

●
●

●

●
●

●●●●●●●●
●●●
●

●●
●
●

●
●●

●●●

●

●●

●●

●

●

●

●●●●

●●●●●●

●●●●

●●●●

●

●

●

●●●

●

●●●

●●●●●●●●●●●●●●

●●●

●●●●●

●●● ●●●●

●●●

●●●●

●●●●

●●●●●●

●●●

●●●●●

●

●● ●●●

●

●●●●●●●

●●●●●●●
●●
●

●●●

●
●●●
●

●●
●

●
●
●

●

●●

●

●

●

●

●

●●

●●

●●●●●●

●●●●

●●●●

●●●

●

●

●

●

●●●
●
●
●
●

●●●●
●●●

●●●

●●●●

●●●
●

●●●

●

●
●

●

●●●●
●
●

●

●●
●●
●●●●●●

●●●●
●●
●
●

●●
●

●
●

●

●

●●●
●●●
●
●●●●
●●●●●●

●
●
●
●

●
●
●
●

●●●
●
●●
●

●●●
●●●●●●●●
●●●

●●●

●●●
●

●●●●

●●●

●●
●

●

●●
●●

●
●

●

●
●

●●●●●●●●
●●●
●

●●
●
●

●
●●

●●●

●

●●

●●

●

●

●

●●●●

●●●●●●

●●●●

●●●●

●

●

●

●●●

●

●●●

●●●●●●●●●●●●●●

●●●

●●●●●

●●● ●●●●

●●●

●●●●

●●●●

●●●●●●

●●●

●●●●●

●

●● ●●●

●

●●●●●●●

●●●●●●●
●●
●

●●●

●
●●●
●
●●

●

●
●
●

●

●●

●

●

●

●

●

●●

●●

●●●●●●

●●●●

●●●●

●●●

●

●

●

●

●●●
●

●
●

●

●●●●
●●●

●●●

●●●●

●●●●

●●●

●

●
●

●

●●●●
●

●

●

●●●●
●●●●●
●

●●●●
●●

●
●
●●●

●
●

●

●

●●●
●●
●

●
●●●●

●●●●●●
●
●
●
●

●
●

●
●

●●
●

●
●●

●

●●●
●●●● ●●●●●●●

●●●

●●●
●

●●●●

●●●

●●
●

●

qsec

●●

●●

●

●

●

●●●●

●●●●●●

●●●●

●●●●

●

●

●

●●●

●

●●●

●●●● ●●●●●●●●●●

●●●

●●●●●

●●●●●● ●

●●●

●●●●

●●●●

●●●●●●

●●●

●●●●●

●

●●●●●

●

●●●●●●●

●●●●●●●
●●
●

●●●

●
●●●
●
●●

●

●
●
●

●

●●

●

●

●

●

●

●●

●●

●●●●●●

●●●●

●●●●

●●●

●

●

●

●

●●●
●

●
●

●

●●●●
●●●

●●●

●●●●

●●●●

●●●

●

●
●

●

●●●●
●

●

●

●●●●
●●●●●
●

●●●●
●●

●
●
●●●

●
●

●

●

●●●
●●
●

●
●●●●

●●●●●●
●
●
●
●

●
●

●
●

●●
●

●
●●

●

●●●
●●●● ●●●●●●●

●●●

●●●
●

●●●●

●●●

●●
●

●

●●
●●

●
●

●

●
●

●●●●●●●●
●●●
●

●●
●
●
●

●●
●●●

●

●●

●●

●

●

●

●●●●

●●●●●●

●●●●

●●●●

●

●

●

●●●

●

●●●

●●●● ●●●●●●●●●●

●●●

●●●●●

●●●●●● ●

16

●●●

●●●●

●●●●

●●●●●●

●●●

●●●●●

●

●●●●●

●

0.0

●● ●●● ●●

●●●●●●●
●●
●

●●●

●
●●●
●

●●
●

●
●
●

●

●●

●

●

●

●

●

●●

●●

●●●●●●

●●●●

●●●●

●● ●

●

●

●

●

●● ●
●

●
●

●

●●●●
●●●

●●●

●●●●

●●●
●

●● ●

●

●
●

●

●● ●●
●

●

●

●●
●●

●●●●●
●

●●●●
●●
●
●

●● ●

●
●

●

●

●● ●
●●
●

●
●●●●

●●●●●●
●
●
●
●

●
●
●
●

●●
●

●
●●

●

●● ●
●● ●● ●●●●

●●●
●●●

●●●
●

●●●●

●● ●

●●
●

●

●●
●●

●
●

●

●
●

●●●●●●●●
●●●
●

●●
●
●

●
● ●
●●●

●

vs

●● ●

●● ●● ●●●●●●●●●●

●●●

●●●●●

●● ●●●● ●

●● ●

●● ●●

●●●●

●●●●●●

●●●

●●●●●

●

● ●●●●

●

●● ●●● ●●

●●●●●●●
●●
●

●●●

●
●●●
●

●●
●

●
●
●

●

●●

●

●

●

●

●

●●

●●

●●●●●●

●●●●

●●●●

●● ●

●

●

●

●

●● ●
●

●
●

●

●●●●
●●●

●●●

●●●●

●●●
●

●● ●

●

●
●

●

●● ●●
●

●

●

●●
●●

●●●●●
●

●●●●
●●
●
●

●● ●

●
●

●

●

●● ●
●●
●

●
●●●●

●●●●●●
●
●
●
●

●
●
●
●

●●
●

●
●●

●

●● ●
●● ●● ●●●●

●●●
●●●

●●●
●

●●●●

●● ●

●●
●

●

●●
●●

●
●

●

●
●

●●●●●●●●
●●●
●

●●
●
●

●
● ●
●●●

●

●●

●●

●

●

●

●●●●

●●●●●●

●●●●

●●●●

●

●

●

●●●

●

●● ●

●● ●● ●●●●●●●●●●

●●●

●●●●●

●● ●●●● ●

●● ●

●● ●●

●●●●

●●●●●●

●●●

●●●●●

●

● ●●●●

●

●●●●●●●

●●●●●●●
●●
●

●●●

●
●●●
●

●●
●

●
●
●
●

●●

●

●

●

●

●

●●

●●

●●●●●●

●●●●

●●●●

●●●

●

●

●

●

●●●
●
●
●
●

●●●●
●●●

●●●

●●●●

●●●
●

●●●

●

●
●

●

●●●●
●
●

●

●●
●●
●●●●●
●

●●●●
●●
●
●

●●
●

●
●

●

●

●●●
●●●
●
●●●●
●●●●●●

●
●
●

●

●
●
●
●

●●●
●
●●
●

●●●
●●●●●●●●
●●●
●●●

●●●
●
●●●●

●●●

●●
●
●

●●
●●

●
●

●

●
●

●●●●●●●●
●●●

●
●●
●
●

●
●●
●●●

●

●●

●●

●

●

●

●●●●

●●●●●●

●●●●

●●●●

●

●

●

●●●

●

am

●●●

●●●●

●●●●

●●●●●●

●●●

●●●●●

●

●●●●●

●

●●●●●●●

●●●●●●●
●●
●

●●●

●
●●●
●

●●
●

●
●
●
●

●●

●

●

●

●

●

●●

●●

●●●●●●

●●●●

●●●●

●●●

●

●

●

●

●●●
●
●
●
●

●●●●
●●●

●●●

●●●●

●●●
●

●●●

●

●
●

●

●●●●
●
●

●

●●
●●
●●●●●
●

●●●●
●●
●
●

●●
●

●
●

●

●

●●●
●●●
●
●●●●
●●●●●●

●
●
●

●

●
●
●
●

●●●
●
●●
●

●●●
●●●●●●●●
●●●
●●●

●●●
●
●●●●

●●●

●●
●
●

●●
●●

●
●

●

●
●

●●●●●●●●
●●●

●
●●
●
●

●
●●
●●●

●

●●

●●

●

●

●

●●●●

●●●●●●

●●●●

●●●●

●

●

●

●●●

●

●●●

●●●●●●●●●●●●●●

●●●

●●●●●

●●●●●●●

0.0

●●●

●●●●

●●●●

●●●●●●

●●●

●●●●●

●

●●●●●

●

3.0

●●●●●●●

●●●●●●●
●●
●

●●●

●
●●●
●

● ●
●

●
●
●

●

●●

●

●

●

●

●

●●

●●

●●●●●●

●●●●

●●●●

● ●●

●

●

●

●

●●●
●
●
●
●

●●●●
●●●

●●●

●●●●

●●●
●

● ●●

●

●
●

●

●●●●
●
●

●

●●
●●

●●●●●
●

●●●●
●●
●
●

● ●●

●
●

●

●

●●●
●●●
●

●●●●
●●●●●●

●
●
●

●

●
●
●
●

● ●
●
●
●●

●

●●●
●●●● ●●●●
●●●
●●●

●●●
●
●●●●

● ●●

●●
●

●

●●
●●

●
●

●

●
●

●●●●●●●●
●●●

●
●●
●
●

●
●●
●●●

●

●●

●●

●

●

●

●●●●

●●●●●●

●●●●

●●●●

●

●

●

●●●

●

●●●

●●●● ●●●●●●●●●●

●●●

●●●●●

● ●●●●●●

gear

●●●●●●●

●●●●●●●
●●
●

●●●

●
●●●
●

● ●
●

●
●
●

●

●●

●

●

●

●

●

●●

●●

●●●●●●

●●●●

●●●●

● ●●

●

●

●

●

●●●
●
●
●
●

●●●●
●●●

●●●

●●●●

●●●
●

● ●●

●

●
●

●

●●●●
●
●

●

●●
●●

●●●●●
●

●●●●
●●
●
●

● ●●

●
●

●

●

●●●
●●●
●

●●●●
●●●●●●

●
●
●

●

●
●
●
●

● ●
●
●
●●

●

●●●
●●●● ●●●●
●●●
●●●

●●●
●
●●●●

● ●●

●●
●

●

●●
●●

●
●

●

●
●

●●●●●●●●
●●●

●
●●
●
●

●
●●
●●●

●

●●

●●

●

●

●

●●●●

●●●●●●

●●●●

●●●●

●

●

●

●●●

●

●●●

●●●● ●●●●●●●●●●

●●●

●●●●●

● ●●●●●●

●●●

●●●●

●●●●

●●●●●●

●●●

●●●●●

●

●●●●●

●

●●●●●●●

●●●●●●●
●●
●

●●●

●
●●●
●

●●
●

●
●

●
●

●●

●

●

●

●

●

●●

●●

●●●●●●

●●●●

●●●●

●●●

●

●

●

●

●●●
●
●
●

●

●●●●
●●●

●●●

●●●●

●●●
●

●●●

●

●
●

●

●●●●
●
●

●

●●
●●
●●●●●●

●●●●
●●
●

●
●●
●

●
●

●

●

●●●
●●●

●
●●●●

●●●●●●
●
●
●

●

●
●
●

●

●●●
●
●●
●

●●●
●●●● ●●●●

●●●
●●●

●●●
●

●●●●

●●●

●●
●

●

●●
●●

●
●

●

●
●

●●●●●●●●
●●●

●
●●
●

●
●
●●

●●●

●

●●

●●

●

●

●

●●●●

●●●●●●

●●●●

●●●●

●

●

●

●●●

●

●●●

●●●● ●●●●●●●●●●

●●●

●●●●●

●●●●●●●

●●●

●●●●

●●●●

●●●●●●

●●●

●●●●●

●

●●●●●

●

mpg.1

●●

●

●

●

●

●

●●

●●

●●●●●●

●●●●

●●●●

●●●

●

●

●

●

●●●
●
●
●

●

●●●●
●●●

●●●

●●●●

●●●
●

●●●

●

●
●

●

●●●●
●
●

●

●●
●●
●●●●●●

●●●●
●●
●

●
●●
●

●
●

●

●

●●●
●●●

●
●●●●

●●●●●●
●
●
●

●

●
●
●

●

●●●
●
●●
●

●●●
●●●● ●●●●

●●●
●●●

●●●
●

●●●●

●●●

●●
●

●

●●
●●

●
●

●

●
●

●●●●●●●●
●●●

●
●●
●

●
●
●●

●●●

●

●●

●●

●

●

●

●●●●

●●●●●●

●●●●

●●●●

●

●

●

●●●

●

●●●

●●●● ●●●●●●●●●●

●●●

●●●●●

●●●●●●●

10

●●●

●●●●

●●●●

●●●●●●

●●●

●●●●●

●

●●●●●

●

4

●●● ● ●● ●

●● ●● ●●●
●●
●

●●●

●
●●●
●

●●
●

●
●

●
●

●●

●

●

●

●

●

●●

●●

●●●●●●

●●●●

●●●●

●●●

●

●

●

●

●●●
●

●
●

●

●● ●●
●●●

●●●

●●●●

●●●
●

●●●

●

●
●

●

●●● ●
●

●

●

●●
●●

●●●●●
●

●●●●
●●
●
●

●●
●

●
●

●

●

●●●
● ●
●

●
●● ●●

●●●●●●
●
●
●
●

●
●
●
●

●●●
●

● ●
●

●●●
● ●● ●●● ●● ●●●

●●●

●●●
●

●●●●

●●●

●●
●

●

●●
● ●

●
●

●

●
●

●● ●●●●●●
●●●
●

●●
●
●

●
●●

●● ●

●

●●

● ●

●

●

●

●● ●●

●●●●●●

●●●●

●●●●

●

●

●

●● ●

●

●●●

● ●● ●●● ●● ●●●●●●

●●●

● ●●●●

●●● ●● ●●

●●●

● ●● ●

●● ●●

●●●●●●

●●●

● ●●●●

●

●● ●● ●

●

●●● ● ●● ●

●● ●● ●●●
●●
●

●●●

●
●●●
●

●●
●

●
●

●
●

cyl.1

●●●
●

●
●

●

●● ●●
●●●

●●●

●●●●

●●●
●

●●●

●

●
●

●

●●● ●
●

●

●

●●
●●

●●●●●
●

●●●●
●●
●
●

●●
●

●
●

●

●

●●●
● ●
●

●
●● ●●

●●●●●●
●
●
●
●

●
●
●
●

●●●
●

● ●
●

●●●
● ●● ●●● ●● ●●●

●●●

●●●
●

●●●●

●●●

●●
●

●

●●
● ●

●
●

●

●
●

●● ●●●●●●
●●●
●

●●
●
●

●
●●

●● ●

●

●●

● ●

●

●

●

●● ●●

●●●●●●

●●●●

●●●●

●

●

●

●● ●

●

●●●

● ●● ●●● ●● ●●●●●●

●●●

● ●●●●

●●● ●● ●●

●●●

● ●● ●

●● ●●

●●●●●●

●●●

● ●●●●

●

●● ●● ●

●

●●●●●●●

●●●●●●●
●●
●

●●●

●
●●●
●

●●
●

●
●

●
●

●●

●

●

●

●

●

●●

●●

●●● ●●●

●●●●

●●●●

●●●

●

●

●

●

●●●
●

●
●

●

●●●●
●●●

●●●

●●●●

●●●
●

●●●

●

●
●

●

●●●●
●

●

●

●●
●●

●●● ●●●

●●●●
●●
●
●

●●
●

●
●

●

●

●●●
●●
●

●
●●●●

●●● ●●●
●
●
●
●

●
●
●
●

●●●
●

●●
●

●●●
●●●●●●●●
●●●

●●●

●●●
●

●●●●

●●●

●●
●

●

●●
●●

●
●

●

●
●

●●●●● ●●●
●●●
●

●●
●
●

●
●●

●●●

●

●●

●●

●

●

●

●●●●

●●● ●●●

●●●●

●●●●

●

●

●

●●●

●

●●●

●●●●●●●●●●● ●●●

●●●

● ●●●●

●●● ●●●●

●●●

●●●●

●●●●

●●● ●●●

●●●

● ●●●●

●

●● ●●●

●

●●●●●●●

●●●●●●●
●●
●

●●●

●
●●●
●

●●
●

●
●

●
●

●●

●

●

●

●

●

●●

●●

●●● ●●●

●●●●

●●●●

●●●

●

●

●

●

disp.1

●●●●
●

●

●

●●
●●

●●● ●●●

●●●●
●●
●
●

●●
●

●
●

●

●

●●●
●●
●

●
●●●●

●●● ●●●
●
●
●
●

●
●
●
●

●●●
●

●●
●

●●●
●●●●●●●●
●●●

●●●

●●●
●

●●●●

●●●

●●
●

●

●●
●●

●
●

●

●
●

●●●●● ●●●
●●●
●

●●
●
●

●
●●

●●●

●

●●

●●

●

●

●

●●●●

●●● ●●●

●●●●

●●●●

●

●

●

●●●

●

●●●

●●●●●●●●●●● ●●●

●●●

● ●●●●

●●● ●●●●

100

●●●

●●●●

●●●●

●●● ●●●

●●●

● ●●●●

●

●● ●●●

●

50

●●●●●● ●

●●●●●●●
●●
●

●●●

●
●●●
●

●●
●

●
●

●
●

●●

●

●

●

●

●

●●

●●

●●●●●●

●●●●

●●●●

●●●

●

●

●

●

●●●
●
●

●
●

●●●●
●●●

●●●

●●●●

●●●●

●●●

●

●
●

●

●●●●
●

●

●

●●
●●
●●●●●
●

●●●●
●●

●
●

●●
●

●
●

●

●

●●●
●●
●

●
●●●●

●●●●●●
●
●
●
●

●
●

●
●

●●●
●

● ●
●

●●●
●●● ●●●●●
●●●
●●●

●●●
●
●●●●

●●●

●●
●

●

●●
●●

●
●

●

●
●

●●●●●●●●
●●●
●
●●

●
●

●
●●

●● ●

●

●●

●●

●

●

●

●●●●

●●●●●●

●●●●

●●●●

●

●

●

●● ●

●

●●●

●●● ●●●●●●●●●●●

●●●

●●●●●

●●● ●● ●●

●●●

●●● ●

●●●●

●●●●●●

●●●

●●●●●

●

●● ●● ●

●

●●●●●● ●

●●●●●●●
●●
●

●●●

●
●●●
●

●●
●

●
●

●
●

●●

●

●

●

●

●

●●

●●

●●●●●●

●●●●

●●●●

●●●

●

●

●

●

●●●
●
●

●
●

●●●●
●●●

●●●

●●●●

●●●●

●●●

●

●
●

●

hp.1

●●●
●●
●

●
●●●●

●●●●●●
●
●
●
●

●
●

●
●

●●●
●

● ●
●

●●●
●●● ●●●●●
●●●
●●●

●●●
●
●●●●

●●●

●●
●

●

●●
●●

●
●

●

●
●

●●●●●●●●
●●●
●
●●

●
●

●
●●

●● ●

●

●●

●●

●

●

●

●●●●

●●●●●●

●●●●

●●●●

●

●

●

●● ●

●

●●●

●●● ●●●●●●●●●●●

●●●

●●●●●

●●● ●● ●●

●●●

●●● ●

●●●●

●●●●●●

●●●

●●●●●

●

●● ●● ●

●

●●●●●●●

●●●●●●●
●●
●

●●●

●
●●●
●

●●
●

●
●
●

●

●●

●

●

●

●

●

●●

●●

●●●●●●

●●●●

●●●●

●●●

●

●

●

●

●●●
●
●

●
●

●●●●
●●●

●●●

●●●●

●●●●

●●●

●

●
●

●

●●●●
●

●

●

●●
●●

●●●●●
●

●●●●
●●

●
●

●●
●

●
●

●

●

●●●
●●●
●
●●●●

●●●●●●
●

●
●

●

●
●

●
●

●●●
●

●●
●

●●●
●●●●●●●●
●●●
●●●

●●●●
●●●●

●●●

●●
●

●

●●
●●

●
●

●

●
●

●●●●●●●●
●●●●

●●
●

●
●
●●
●●●

●

●●

●●

●

●

●

●●●●

●●●●●●

●●●●

●●●●

●

●

●

●●●

●

●●●

●●●●●●●●●●●●●●

●●●

●●●●●

●●●●●●●

●●●

●●●●

●●●●

●●●●●●

●●●

●●●●●

●

●●●●●

●

●●●●●●●

●●●●●●●
●●
●

●●●

●
●●●
●

●●
●

●
●
●

●

●●

●

●

●

●

●

●●

●●

●●●●●●

●●●●

●●●●

●●●

●

●

●

●

●●●
●
●

●
●

●●●●
●●●

●●●

●●●●

●●●●

●●●

●

●
●

●

●●●●
●

●

●

●●
●●

●●●●●
●

●●●●
●●

●
●

●●
●

●
●

●

●

drat.1

●●●
●●●●●●●●
●●●
●●●

●●●●
●●●●

●●●

●●
●

●

●●
●●

●
●

●

●
●

●●●●●●●●
●●●●

●●
●

●
●
●●
●●●

●

●●

●●

●

●

●

●●●●

●●●●●●

●●●●

●●●●

●

●

●

●●●

●

●●●

●●●●●●●●●●●●●●

●●●

●●●●●

●●●●●●●

3.0

●●●

●●●●

●●●●

●●●●●●

●●●

●●●●●

●

●●●●●

●

2

●●●●●●●

●●●●●●●
●●
●

●●●

●
●●●
●

●●
●

●
●
●

●

●●

●

●

●

●

●

●●

●●

●●●●●●

●●●●

●●●●

●●●

●

●

●

●

●●●
●
●
●
●

●●●●
●●●

●●●

●●●●

●●●
●

●●●

●

●
●

●

●●●●
●
●

●

●●
●●
●●●●●●

●●●●
●●
●
●

●●
●

●
●

●

●

●●●
●●●
●
●●●●
●●●●●●

●
●
●
●

●
●
●
●

●●●
●
●●
●

●●●
●●●●●●●●
●●●

●●●

●●●
●

●●●●

●●●

●●
●

●

●●
●●

●
●

●

●
●

●●●●●●●●
●●●
●

●●
●
●

●
●●

●●●

●

●●

●●

●

●

●

●●●●

●●●●●●

●●●●

●●●●

●

●

●

●●●

●

●●●

●●●●●●●●●●●●●●

●●●

●●●●●

●●● ●●●●

●●●

●●●●

●●●●

●●●●●●

●●●

●●●●●

●

●● ●●●

●

●●●●●●●

●●●●●●●
●●
●

●●●

●
●●●
●

●●
●

●
●
●

●

●●

●

●

●

●

●

●●

●●

●●●●●●

●●●●

●●●●

●●●

●

●

●

●

●●●
●
●
●
●

●●●●
●●●

●●●

●●●●

●●●
●

●●●

●

●
●

●

●●●●
●
●

●

●●
●●
●●●●●●

●●●●
●●
●
●

●●
●

●
●

●

●

●●●
●●●
●
●●●●
●●●●●●

●
●
●
●

●
●
●
●

●●●
●
●●
●

wt.1

●●
●●

●
●

●

●
●

●●●●●●●●
●●●
●

●●
●
●

●
●●

●●●

●

●●

●●

●

●

●

●●●●

●●●●●●

●●●●

●●●●

●

●

●

●●●

●

●●●

●●●●●●●●●●●●●●

●●●

●●●●●

●●● ●●●●

●●●

●●●●

●●●●

●●●●●●

●●●

●●●●●

●

●● ●●●

●

●●●●●●●

●●●●●●●
●●
●

●●●

●
●●●
●
●●

●

●
●
●

●

●●

●

●

●

●

●

●●

●●

●●●●●●

●●●●

●●●●

●●●

●

●

●

●

●●●
●

●
●

●

●●●●
●●●

●●●

●●●●

●●●●

●●●

●

●
●

●

●●●●
●

●

●

●●●●
●●●●●
●

●●●●
●●

●
●
●●●

●
●

●

●

●●●
●●
●

●
●●●●

●●●●●●
●
●
●
●

●
●

●
●

●●
●

●
●●

●

●●●
●●●● ●●●●●●●

●●●

●●●
●

●●●●

●●●

●●
●

●

●●
●●

●
●

●

●
●

●●●●●●●●
●●●
●

●●
●
●
●

●●
●●●

●

●●

●●

●

●

●

●●●●

●●●●●●

●●●●

●●●●

●

●

●

●●●

●

●●●

●●●● ●●●●●●●●●●

●●●

●●●●●

●●●●●● ●

●●●

●●●●

●●●●

●●●●●●

●●●

●●●●●

●

●●●●●

●

●●●●●●●

●●●●●●●
●●
●

●●●

●
●●●
●
●●

●

●
●
●

●

●●

●

●

●

●

●

●●

●●

●●●●●●

●●●●

●●●●

●●●

●

●

●

●

●●●
●

●
●

●

●●●●
●●●

●●●

●●●●

●●●●

●●●

●

●
●

●

●●●●
●

●

●

●●●●
●●●●●
●

●●●●
●●

●
●
●●●

●
●

●

●

●●●
●●
●

●
●●●●

●●●●●●
●
●
●
●

●
●

●
●

●●
●

●
●●

●

●●●
●●●● ●●●●●●●

●●●

●●●
●

●●●●

●●●

●●
●

●

qsec.1

●●

●●

●

●

●

●●●●

●●●●●●

●●●●

●●●●

●

●

●

●●●

●

●●●

●●●● ●●●●●●●●●●

●●●

●●●●●

●●●●●● ●

16

●●●

●●●●

●●●●

●●●●●●

●●●

●●●●●

●

●●●●●

●

0.0

●● ●●● ●●

●●●●●●●
●●
●

●●●

●
●●●
●

●●
●

●
●
●

●

●●

●

●

●

●

●

●●

●●

●●●●●●

●●●●

●●●●

●● ●

●

●

●

●

●● ●
●

●
●

●

●●●●
●●●

●●●

●●●●

●●●
●

●● ●

●

●
●

●

●● ●●
●

●

●

●●
●●

●●●●●
●

●●●●
●●
●
●

●● ●

●
●

●

●

●● ●
●●
●

●
●●●●

●●●●●●
●
●
●
●

●
●
●
●

●●
●

●
●●

●

●● ●
●● ●● ●●●●

●●●
●●●

●●●
●

●●●●

●● ●

●●
●

●

●●
●●

●
●

●

●
●

●●●●●●●●
●●●
●

●●
●
●

●
● ●
●●●

●

●●

●●

●

●

●

●●●●

●●●●●●

●●●●

●●●●

●

●

●

●●●

●

●● ●

●● ●● ●●●●●●●●●●

●●●

●●●●●

●● ●●●● ●

●● ●

●● ●●

●●●●

●●●●●●

●●●

●●●●●

●

● ●●●●

●

●● ●●● ●●

●●●●●●●
●●
●

●●●

●
●●●
●

●●
●

●
●
●

●

●●

●

●

●

●

●

●●

●●

●●●●●●

●●●●

●●●●

●● ●

●

●

●

●

●● ●
●

●
●

●

●●●●
●●●

●●●

●●●●

●●●
●

●● ●

●

●
●

●

●● ●●
●

●

●

●●
●●

●●●●●
●

●●●●
●●
●
●

●● ●

●
●

●

●

●● ●
●●
●

●
●●●●

●●●●●●
●
●
●
●

●
●
●
●

●●
●

●
●●

●

●● ●
●● ●● ●●●●

●●●
●●●

●●●
●

●●●●

●● ●

●●
●

●

●●
●●

●
●

●

●
●

●●●●●●●●
●●●
●

●●
●
●

●
● ●
●●●

●

vs.1

●● ●

●● ●● ●●●●●●●●●●

●●●

●●●●●

●● ●●●● ●

●● ●

●● ●●

●●●●

●●●●●●

●●●

●●●●●

●

● ●●●●

●

●●●●●●●

●●●●●●●
●●
●

●●●

●
●●●
●

●●
●

●
●
●
●

●●

●

●

●

●

●

●●

●●

●●●●●●

●●●●

●●●●

●●●

●

●

●

●

●●●
●
●
●
●

●●●●
●●●

●●●

●●●●

●●●
●

●●●

●

●
●

●

●●●●
●
●

●

●●
●●
●●●●●
●

●●●●
●●
●
●

●●
●

●
●

●

●

●●●
●●●
●
●●●●
●●●●●●

●
●
●

●

●
●
●
●

●●●
●
●●
●

●●●
●●●●●●●●
●●●
●●●

●●●
●
●●●●

●●●

●●
●
●

●●
●●

●
●

●

●
●

●●●●●●●●
●●●

●
●●
●
●

●
●●
●●●

●

●●

●●

●

●

●

●●●●

●●●●●●

●●●●

●●●●

●

●

●

●●●

●

●●●

●●●●●●●●●●●●●●

●●●

●●●●●

●●●●●●●

●●●

●●●●

●●●●

●●●●●●

●●●

●●●●●

●

●●●●●

●

●●●●●●●

●●●●●●●
●●
●

●●●

●
●●●
●

●●
●

●
●
●
●

●●

●

●

●

●

●

●●

●●

●●●●●●

●●●●

●●●●

●●●

●

●

●

●

●●●
●
●
●
●

●●●●
●●●

●●●

●●●●

●●●
●

●●●

●

●
●

●

●●●●
●
●

●

●●
●●
●●●●●
●

●●●●
●●
●
●

●●
●

●
●

●

●

●●●
●●●
●
●●●●
●●●●●●

●
●
●

●

●
●
●
●

●●●
●
●●
●

●●●
●●●●●●●●
●●●
●●●

●●●
●
●●●●

●●●

●●
●
●

●●
●●

●
●

●

●
●

●●●●●●●●
●●●

●
●●
●
●

●
●●
●●●

●

●●

●●

●

●

●

●●●●

●●●●●●

●●●●

●●●●

●

●

●

●●●

●

am.1

0.0

●●●

●●●●

●●●●

●●●●●●

●●●

●●●●●

●

●●●●●

●

3.0

10

●●●●●●●

●●●●●●●
●●
●

●●●

●
●●●
●

● ●
●

●
●
●

●

●●

●

●

●

●

●

●●

●●

●●●●●●

●●●●

●●●●

● ●●

●

●

●

●

10
0●●●

●
●
●
●

●●●●
●●●

●●●

●●●●

●●●
●

● ●●

●

●
●

●

●●●●
●
●

●

●●
●●

●●●●●
●

●●●●
●●
●
●

● ●●

●
●

●

●

3.
0●●●

●●●
●

●●●●
●●●●●●

●
●
●

●

●
●
●
●

● ●
●
●
●●

●

●●●
●●●● ●●●●
●●●
●●●

●●●
●
●●●●

● ●●

●●
●

●

16●●
●●

●
●

●

●
●

●●●●●●●●
●●●

●
●●
●
●

●
●●
●●●

●

●●

●●

●

●

●

●●●●

●●●●●●

●●●●

●●●●

●

●

●

●●●

●

0.
0

●●●

●●●● ●●●●●●●●●●

●●●

●●●●●

● ●●●●●●

●●●

●●●●

●●●●

●●●●●●

●●●

●●●●●

●

●●●●●

●

10

●●●●●●●

●●●●●●●
●●
●

●●●

●
●●●
●

● ●
●

●
●
●

●

●●

●

●

●

●

●

●●

●●

●●●●●●

●●●●

●●●●

● ●●

●

●

●

●

10
0●●●

●
●
●
●

●●●●
●●●

●●●

●●●●

●●●
●

● ●●

●

●
●

●

●●●●
●
●

●

●●
●●

●●●●●
●

●●●●
●●
●
●

● ●●

●
●

●

●
3.

0●●●
●●●
●

●●●●
●●●●●●

●
●
●

●

●
●
●
●

● ●
●
●
●●

●

●●●
●●●● ●●●●
●●●
●●●

●●●
●
●●●●

● ●●

●●
●

●

16●●
●●

●
●

●

●
●

●●●●●●●●
●●●

●
●●
●
●

●
●●
●●●

●

●●

●●

●

●

●

●●●●

●●●●●●

●●●●

●●●●

●

●

●

●●●

●

0.
0

●●●

●●●● ●●●●●●●●●●

●●●

●●●●●

● ●●●●●●

gear.1

Figure 14: Pairs plot for an artificially augmented dataset with 20 variables

40

zip_code[,1] %>% head ## the first column contains the digit label

[1] 6 5 4 7 3 6

zip_code[1,-1] %>% unlist %>% str ## the other columns contain the pixels

Named num [1:256] -1 -1 -1 -1 -1 -1 -1 -0.631 0.862 -0.167 ...

- attr(*, "names")= chr [1:256] "V2" "V3" "V4" "V5" ...

digit <- zip_code[,1] ## the digit label

Each row of zip_code contains the digit label, and the pixels of the corresponding
image, which we’ve plotted in Figure 15.

op <- par(mfrow=c(1,2))

the pixels must be sorted as a matrix before being plotted

zip_code[1,-1] %>% unlist %>% matrix(16,16) %>% image(col=grey(seq(1,0,

len=100)), xaxt='n', yaxt='n')

some care is needed to get the image in the correct orientation!

#

a simple function to plot the image of the digit

input: x, the pixel values as a vector

plot.digit = function(x, num=NULL, ...){
x_image <- x %>% matrix(16,16) %>% (function(y){ y[, ncol(y):1]})

image(x_image, col=gray(seq(1,0, len=100)))

}
plot.digit(unlist(zip_code[1,-1]), xaxt='n', yaxt='n')

par(op)

We now plot in Figure 16 one image of each digits 0, 1, . . . , 8 (we’ve omitted 9
for convenience).

##

op <- par(mfrow=c(3,3), mai=rep(0.01,4))

for(i in 0:8){
j <- which(digit == i)[1]

zip_code[j,-1] %>% unlist %>% plot.digit(xaxt='n', yaxt='n')

}
par(op)

Notice that our data is 256 dimensional! Forget about pair plots. Can we do
Chernoff faces? What about Andrew’s curves?

faces2(zip_code[1:40, -1])

41

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 15: The left image seems to be flipped along the Y axis (left), and we’ve
written a simple function to flip the image before plotting it (right).

42

0.0 0.2 0.4 0.6 0.8 1.00.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

0.0 0.2 0.4 0.6 0.8 1.00.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 16: One example of each digit from 0 to 8.

43

Warning in faces2(zip code[1:40, -1]): using only first 18 columns

of input

andrews(zip_code[1:40, -1], main='Andrews curves')

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31 32 33 34 35

36 37 38 39 40

Andrews curves

−3 −2 −1 0 1 2 3

−
10

−
5

0
5

10

Only the first 18 pixels are taken into account with Chernoff faces, and Andrews
curves produced nothing! We will see in the following Section on how we can visualise
the ZIP code dataset.

44

4 Dimension Reduction Techniques

4.1 Multivariate moments

Suppose we have a random vector X = (X1, . . . , Xp)
T arising from some probability

distribution. Later in the course we shall discuss some common multivariate distri-
butions, but here we provide some basic results regarding the means, variances and
covariances.

We shall use sometimes the notation v′ instead of vT to denote the transpose of
a vector/matrix. Recall the definition of covariance for random variables X, Y ∈ R
is Cov(X, Y) = E [(X − EX)(Y − EY)], which is well defined if E[X2 + Y 2] <∞.

Definition 4.1.1 (Multivariate moments). The expected value of X is
the p × 1 vector E(X) = (E(X1), . . . ,E(Xp))

T, where E(Xi) is the usual
univariate expected value of Xi. The covariance matrix of X, written
Cov (X), is the p × p matrix with entries (Cov (X))ij = Cov (Xi, Xj). It
is well-defined if E|X|2 < ∞. If Y ∈ Rq, the cross-covariance matrix
between X and Y, written Cov (X,Y), is the p × q matrix with entries
(Cov (X,Y))ij = Cov (Xi, Yj). It is well-defined if E [|X|2 + |Y|2] <∞.

One is often interested in the expected value or the covariances of linear combi-
nations of the elements in X.

Proposition 4.1.2 (Moments of linear transformations). Let C be
a (non-random) q × p matrix and X ∈ Rp be a random vector. Then the
following hold:

1. E(CX) = C E(X) (linearity)

2. Cov (CX) = C Cov (X)CT

Proof. Left as an exercise.

Proposition 4.1.3 (and Definition of Total Variance). Assume X ∈
Rp is a random vector with E|X|2 <∞. The total variance of the random
vector X ∈ Rp is defined as E|X− EX|2, and we have

E|X− EX|2 =

p∑
i=1

Var(Xi) = Tr(Cov(X)).

Proof. Left as an exercise.

Example 4.1.4 (Covariance of Affine Transformation). Suppose X = (X1, X2)T,
where X1 measures the average score that students obtain in the first year of college
and X2 that in the second year (in a scale from 0 to 10). Further suppose that

E(X) = (8.0, 8.2)T and Cov (X) =

(
1 0.8

0.8 1

)
. Because these two variables are

45

highly correlated, someone has the idea to work with the average Y1 = 1
2
(X1 +X2)

and the increase Y2 = (X2−X1). What are the mean and variance of Y = (Y1, Y2)?

Clearly,

C =

(
1
2

1
2

−1 1

)
, and CX =

(
1
2
(X1 +X2)
X2 −X1

)
.

Therefore,

E(Y) = C E(X) =

(
1
2
(8.0 + 8.2)
8.2− 8.0

)
=

(
8.1
0.2

)

Cov (Y) =

(
1
2

1
2

−1 1

)
Cov (X)

(1
2
−1

1
2

1

)
=

(
0.9 0
0 0.4

)
.

You can check that the diagonal elements in Cov (Y) are those you would obtain
with the usual formulas for Var(X1 + X2) = Var(X1) + Var(X2) + 2 Cov (X1, X2).
However, notice that Cov(Y) also tells us about the covariance between Y1 and
Y2. In fact, it turns out that working with the average score and the increase may
be a good idea, as they are uncorrelated and can hence be thought to measure
complementary features (namely, overall academic performance and improvement
after 1 year of studies).

4.2 Principal Component Analysis

4.2.1 Basic definition

Principal Component Analysis is one of the most popular descriptive tools in multi-
variate statistics. Suppose we are given a set of variables X = (X1, . . . , Xp)

T, where
p is too large to be able to look at all the pairwise plots between the entries of X.
One way of understanding the random vector X is to look at 1-dimensional sum-
maries of it, obtained by linear projections, that is, to look at random variables of
the form vTX, for v ∈ Rp. But how to choose v? One way is to choose it such that
the variance of vTX is maximised. This is illustrated in Figure 17. But notice that
Var(αvTX) = α2 Var(vTX), for α ∈ R. Therefore for this to make sense, we need to
constrain v to have a fixed norm, and this is typically done by setting |v| = 1. Once
such a v ∈ Rp, |v| = 1 maximising Var(vTX) is found (let’s call it v1), one can look
for further 1-dimensional linear projections of X, say uTX, with maximal variance,
subject to the constraint that the projection is uncorrelated with vT

1 X, and |u| = 1.

Definition 4.2.1 (Principal Components). Let X ∈ Rp be a random
vector with E

[
XTX

]
<∞. The 1st principal component (PC) load-

ing is a vector v1 ∈ Rp, |v1| = 1, that maximises the variance of vT
1 X, or

in other words

Var(vT
1 X) ≥ Var(uTX), ∀u ∈ Rp, |u| = 1.

For k = 2, . . . , p, the k-th principal component (PC) loading is the

46

Figure 17: Several 1D projections of the data, and their respective density esti-
mates. Notice that some of the projections are well spread, whereas some are very
concentrated.

47

vector vk ∈ Rp, |vk| = 1, that maximises Var(vT
kX) subject to

Cov(vT
kX,vT

j X) = 0,

for all j = 1, . . . , k − 1. In other words,

Var(vT
kX) ≥ Var(uTX),

∀u ∈ Rp, |u| = 1 such that Cov(uTX,vT
j X) = 0, for j = 1, . . . , k − 1.

The random variable vT
kX ∈ R is called the k-th principal compo-

nent (PC) score.
Conducting a principal component analysis (PCA) means com-

puting the PC loadings and PC scores (and doing further analysis based
on these).

Some remarks are in order:

Remark 4.2.2 (definition of PCA). 1. Instead of putting the con-
straint |v| = 1, we could have sought to maximise Var(vTX)/|v|2.

2. Notice that the PC loadings live in the same space as the random
vector X. The PC scores are random variables (take values in R).
You can stack them to create a vector in Rp, but the k-th entry of
this vector will not have the same meaning as the k-th entry of X!

3. By construction, Var(vT
1 X) ≥ Var(vT

2 X) ≥ · · · ≥ Var(vT
pX).

As an example, Figure 18 shows the 2 first PC loadings and corresponding scores
for a dataset in 2D.

Another way of saying this is that we’ve transformed X into new variables Y =
(Y1, . . . , Yp)

T that have the following properties:

• Y is formed by linear combinations of X, i.e. Y = AX for some p× p matrix
A whose rows have unit norm.

• Yk is uncorrelated with Y1, . . . , Yk−1,

• Y1 conserves as much variance in X as possible. Conditional on Yk+1 being
uncorrelated with Y1, . . . , Yk, the random variable Yk+1 conserves as much
variance as possible.

4.2.2 Population Principal Components Analysis

In this Section we look at PCA for a random vector X ∈ Rp. We shall later look
at PCA when one has data, that is, realizations of such random vector. Notice that
Var(vTX) = vT Cov(X)v. This relates the definition of the first PC loading to the
covariance matrix of X. The next result states that the PC loadings of X ∈ Rp are
closely related to the spectral decomposition of the covariance matrix of X.

48

Figure 18: The 2 PC projections of the data (PC 1 in blue, PC 2 in red), and the
respective density estimates of the PC scores.

49

Theorem 4.2.3 (PC loadings, population version). Let X be a ran-
dom vector with covariance Σ = Cov(X), and suppose that Σ has eigen-
values λ1 ≥ . . . ≥ λp ≥ 0 and corresponding orthonormal eigenvectors
e1, . . . , ep. Then v1 = e1, . . . ,vp = ep are the PC loadings of X, and the
corresponding PC scores are Y1 = eT

1 X, Y2 = eT
2 X, . . . , Yp = eT

pX. Further-
more, Var(Y1) = λ1, . . . ,Var(Yp) = λp.

Proof. Let us find the first principal component. The goal is to find v1 maximizing

vT
1 Σv1

vT
1 v1

.

Recall that the eigendecomposition allows us to reconstruct Σ = EΛET, where E
is a p × p orthogonal matrix (ETE = I = EET) with the eigenvector ei as its ith

column. We can write the objective function as

vT
1 Σv1

vT
1 v1

=
vT

1EΛETv1

vT
1EE

Tv1

=
zT

1 Λz1

zT
1 z1

,

where z1 = ETv1 is the inner-product of v1 on the eigenvectors. Since Λ is a diagonal
matrix, the expression can be written as

zT
1 Λz1

zT
1 z1

=

∑p
i=1 λiz

2
1i∑p

i=1 z
2
1i

≤ λ1

∑p
i=1 z

2
1i∑p

i=1 z
2
1i

= λ1.

That is, the maximum possible value of our objective function is λ1, so it suffices
to see that for v1 = e1 we attain this maximum. Because the vectors ei form an
orthonormal basis, for v1 = e1 we obtain z1 = ETv1 = ETe1 = (1, 0, . . . , 0)T. Hence∑p

i=1 λiz
2
1i∑p

i=1 z
2
i1

= λ1.

To complete the proof we proceed by induction. We want to see that vk = ek

maximizes
vT
kEΛETvk

vT
kEE

Tvk
subject to Cov(vT

kX,vT
j X) = 0, j < k, which is equivalent to

vT
kv1 = 0, . . ., vT

kvk−1 = 0. Because vi = ei for i < k, the first k − 1 components in
zk = ETvk are equal to zero. Therefore the objective function becomes

zT
kΛzk
zT
k zk

=

∑p
i=k λiz

2
ki∑p

i=k z
2
ki

≤ λk,

hence again it suffices to see that for vk = ek we attain the maximum value λk. We
can see that this is the case, since zk = ETek = (0, . . . , 1, . . . , 0) (where the 1 is in

the kth position), and hence
∑p

i=k λiz
2
ki∑p

i=k z
2
ki

= λk.

Some remarks are in order:

Remark 4.2.4 (PCA). 1. Notice that PC loadings (and hence PC
scores) are not unique, since eigenvectors are not unique (even more
so if there are repeated eigenvalues). Nevertheless we abuse of lan-
guage and say “the” PC loadings.

2. If we denote Y = (Y1, . . . , Yp)
T where Yk = eT

kX, and define the
p × p matrix E = (e1, . . . , ep)

T, then Y = ETX, and X = EY.

50

This means that there is an isometry between the PC scores and the
original vector X, and that no information is lost by working with
the PC scores. In particular, X and Y have the same total variance
(check this as an exercise).

3. The total variance of Yk = (Y1, . . . , Yk, 0, . . . , 0)T is

E|Yk − EYk|2 = λ1 + · · ·+ λk,

and
E|Yk − EYk|2

E|Y − EY|2
=

λ1 + · · ·+ λk
λ1 + · · ·+ λk + · · ·+ λp,

is the percentage of variance explained by the first k PCs.

4. The PC loadings form an orthonormal basis of Rp, and we can there-
fore construct (for k = 1, . . . , p) the projections matrices Pk = e1e

T
1 +

. . .+ eke
T
k , and the rank k PC projection of X, Xk = PkX. What is

the total variance of Xk? And what is the ratio of the total variance
of Xk to the total variance of X?

Since Y1, . . . , Yk represent more of the variability than Yk+1, . . . , Yp, we can start
by focusing our attention on the first variables. This implicitly assumes that the
interesting features of the random vector X are contained in the directions with
large variation. Obviously, in general there is going to be a loss of information due
to working only with the first few principal components. Remark 4.2.4 tells us that
the proportion of the total variability explained by the kth PC score is

λk∑p
i=1 λi

,

and the total variability jointly explained by PC scores 1, . . . , k is∑k
i=1 λi∑p
i=1 λi

.

4.2.3 Subspace Characterizations of Principal Component Analysis

Notice that the definition of PCA is iterative: we first find the vector that maxi-
mizes the variance of the projection of X along it, and then find the second vector
that maximizes the variance of the projection of X along it, subject to the sec-
ond projection being uncorrelated to the first projection, and so on. In this way we
construct the random variables Y1, Y2, . . . , Yp (called PC scores), and we know by Re-
mark 4.2.4 that the total variance of (Y1, . . . , Yq)

T , ET
q X, where Eq = (e1, . . . , eq),

is λ1+· · ·+λq, the sum of the first q eigenvalues of Cov(X). Since Eq is a p×q matrix
with orthonormal columns, ET

q Eq = Iq, it is natural to ask the following question: is
there a p×q matrix B with BTB = Iq such that BTX has total variance larger than
λ1 + · · ·+ λq? If such matrix B exists, then by searching for directions v ∈ Rp that
iteratively maximize the variance of projections, we are doing worst than if we were
to try and directly find orthonormal vectors v1, . . . ,vq such that (v1, . . . ,vq)

TX has

51

maximal total variance. It turns out that fortunately, our iterative definition (of
PCA) is a good one:

Proposition 4.2.5 (Characterization of PC scores). Assume X ∈
Rp is a random vector with E|X|2 < ∞. Let e1, . . . , ep ∈ Rp be the
(unit length) eigenvectors of Cov(X) (ordered so that their eigenvalues are
decreasing), and let Eq = (e1, . . . , eq), E−q = (ep−q+1, . . . , ep), 1 ≤ q ≤ p.
We have

Tr(Cov(ET
−qX)) ≤ Tr(Cov(BTX)) ≤ Tr(Cov(ET

q X)),

for all p× q matrices B with BTB = Iq.

Proof. The proof uses Poincaré’s inequalities (Lemma 2.4.3), see video.

This result tells us that when looking at the coordinates of X onto q orthonormal
vectors, the total variance is maximized by taking these to be the first q eigenvectors
of Cov(X), but minimized when taking these to be the last q eigenvectors of Cov(X).

Now suppose that instead of looking at coordinates of X with respect to some
orthonormal vectors, we are interested in orthogonal projections of PX of X. If we
let Pq = EqE

T
q , P−q = E−qE

T
−q, we can easily compute (do it!) that

Tr(Cov(PqX)) = λ1 + · · ·+ λq,

and
Tr(Cov(P−qX)) = λp−q+1 + · · ·+ λp.

Notice that Pq, P−q are both orthogonal projections with trace q (or rank q). The
following result tells us that in terms of total variance (or percentage of variance),
the best (respectively worst) orthogonal projection with trace q is given by P = Pq
(respectively P = P−q).

Proposition 4.2.6 (Characterization of PCA by Orthogonal Pro-
jections). Under the assumptions and notation of Proposition 4.2.5, if P
is a p× p orthogonal projection matrix with Tr(P) = q, then

Tr(Cov(P−qX)) ≤ Tr(Cov(PX)) ≤ Tr(Cov(PqX))

that is, the total variance of PX is less than or equal to the total variance
of PqX, but greater than or equal the total variance of P−qX.

Proof. The proof is based on Proposition 4.2.5, see video.

Now suppose that instead of being concerned with maximizing the total variance
of the projection, we are trying to find the best rank q orthogonal projection P
such that PX is closest to X. This can be thought of as the best q dimensional
approximation of X, since PX lives on the q-dimensional image of P . Again, it turns
out that the best and worst projections (in this sense) are given by the projections
P = Pq, P = P−q, obtained from the eigenvectors of Cov(X).

52

Proposition 4.2.7 (Characterization of PCA by Approximations).
Under the assumptions and notation of Proposition 4.2.5, and EX = 0, if
P is a p× p orthogonal projection matrix with Tr(P) = q, then

E|X− P−qX|2 ≥ E|X− PX|2 ≥ E|X− PqX|2.

Proof. The proof is based on Proposition 4.2.5, see exercise.

4.2.4 Sample Principal Components

Recall that the sample variance of y1, . . . , yn ∈ R is given by
∑n

i=1(yi− y)2/(n− 1),
and the sample covariance between y1, . . . , yn ∈ R and z1, . . . , zn ∈ R, where yi, zi
are paired, is given by

∑n
i=1(yi−y)(zi−z)/(n−1), where y =

∑
i yi/n and similarly

for z.
So far we focused on the population case, or random vector case, where we assume

we know the covariance matrix Σ. In practice, we get data x1, . . . ,xn
iid∼ X ∈ Rp, and

these are stacked in a data matrix X = (x1, . . . ,xn)T. The first step for computing
that sample covariance matrix is to center the columns of X. If H = In − 11T/n,
HX is a column-centered version of X (see exercises). Define S = XTHX/(n− 1), the
sample covariance of x1, . . . ,xn.

Definition 4.2.8 (Sample PC loadings). The first sample PC load-
ing is the unit vector v1 ∈ Rp that maximises the sample variance of
vT

1 x1, . . . ,v
T
1 xn. The k-th sample PC loading is the unit vector vk ∈ Rp

that maximises the sample variance of vT
kx1, . . . ,v

T
kxn subject to (vT

kxi)i=1,...,n

and (vT
j xi)i=1,...,n being uncorrelated for j = 1, . . . , k − 1.

Is is an straightforward exercise (do it!) to show that the covariance between
(vT

kxi)i=1,...,n and (vT
j xi)i=1,...,n is given by vT

kSvj. Therefore the definition of the
sample PC loadings can be given as follows: The first sample PC loading is the
vector that maximises vTSv. A k-th sample PC loading is the unit vector vk ∈ Rp

that maximises vT
kSvk subject to vT

kSvj = 0 for j = 1, . . . , k − 1. Mimicking the
proof of Theorem 4.2.3, we get the following result.

Proposition 4.2.9 (Sample PC loadings). The eigenvectors ê1, . . . , êp
of the sample covariance matrix S are the (sample) PC loadings of the
data X. The observations (êT

kxj)j=1,...,n are the k-th (sample) PC scores,

and their variance is λ̂k, the eigenvalue of S corresponding to êk. The
proportion of variance explained by PC k is λ̂k/

∑p
j=1 λ̂j.

Proof. Left as an exercise.

In practice, we drop the word “sample” and we just talk about PC loadings and
PC scores. Also, people usually refer to the PC scores as the “principal components”
(not “principle components”). It is however important to recall the PC scores alone
don’t give the complete picture of the data, and that the PC loadings are needed

53

to reconstruct the data from the PC scores. Letting E be the matrix with columns
equal to orthonormal eigenvectors of S, we notice that the matrix Y = XE has as
k-th column the k-th PC scores. Furthermore, since EET = Ip, we have X = YET.
Taking row i of this expression, we get

xi =

p∑
k=1

(Y)ikêk, (4.2.1)

that is, we can express each observation as a linear combination of the PC loadings,
with weights given by the PC scores!

Notice that since the sample covariance matrix S is only an estimator of the true
covariance matrix Σ, the eigenpairs (êi, λ̂i) are only estimators of the true eigenpairs
(ei, λi). We will discuss the sampling distribution of the eigenstructure of the sample
covariance in Section 4.2.8. See also the video which shows that S is an unbiased
estimator of Σ.

Importantly, there is a link between the PC scores and the spectral decomposition
of XXT, and a link between PC loadings and scores and the SVD of X, see exercises.

4.2.5 Deciding the number of principal components

Recall that X = XEET = YET, as seen above. Let Eq be the p × q matrix with
columns the first q columns of E. Then Xq , XEqE

T
q is a rank q approximation to

X, and we can also see that Xq = YqE
T, where Yq is the same matrix as Y, but with

the last p− q columns replaced by the zero vector. Notice that the i-th row of Xq is
given by

xi =

q∑
k=1

(Y)ikêk,

which is a truncation of (4.2.1). This tells us that we can approximate the data
using q PCs, and the approximation error is (do the calculations!) given by

‖X− Xq‖2
F = (n− 1) · (λ̂q+1 + · · ·+ λ̂p).

The crucial question is “how do I choose q?”. The larger the q, the better ap-
proximation you get, but the lower the q, the more parsimonious the representation
(and hence the easier it is to interpret the resulting PC scores and loading, since
there are fewer of them). We now give two commonly used rules for choosing the
number of PCs:

The 90% rule-of-thumb Recall that the variance of the ith principal component
is λ̂i and the proportion of explained variance is λ̂i/

∑p
i=1 λ̂i. A possible rule-

of-thumb is to choose the smallest number k of components that explain 90%
of the variance, that is ∑k

i=1 λ̂i∑p
i=1 λ̂i

> 0.9.

Of course, 0.9 is an arbitrary choice and can be changed depending on the
application.

54

●

●

●

●
●

1 2 3 4 5

0
20

40
60

80
10

0 ●

●

●

●
●

1 2 3 4 5

0
20

40
60

80
10

0

l2

Figure 19: 2 scree plots. Remember that the ”y” axis represents the variance, and
not the standard deviation.

The shoulder rule A graphical alternative to the rule-of-thumb is to produce the
so-called scree plot, which displays (i, λ̂i) in a plot, that is, a plot of the
PC score variances (and not the standard deviations!). The left panel in
Figure 19 shows a scree plot for λ̂ = (105, 40, 9, 3, 0.1)T. The idea is to look for
a “shoulder” in the plot, that is a value where the remaining λ̂is flatten out.
Here we see that the plot flattens out for λ̂3, λ̂4, λ̂5, which would suggest keep-
ing only the first two PCs (you keep PCs before the shoulder). For two PCs
the proportion of explained variance is (105+40)/(105+40+9+3+0.1)=0.923.
The right panel in Figure 19 shows the scree plot for λ̂ = (105, 45, 25, 3, 0.1)T.
Here the plot flattens out after λ̂4, which suggests keeping three PCs The
proportion of explained variance with 3 PCs is 0.983, and with 2 PCs 0.842.

These rules are quite subjective. Interesting features of the data can be in the
first few PCs, which are kept (and hence analysed) by one of the two rules given
above, but it may also be that interesting features of the data are hidden in PCs
that are not kept by either rule.

4.2.6 Interpreting the principal components

Recall that we observe x1, . . . ,xn
iid∼ X = (X1, . . . , Xp)

T ∈ Rp. While the original
variables X1, . . . , Xp usually have some context-specific meaning, principal compo-
nents are linear combinations of these that require some effort to interpret. Let us
start by seeing a couple of examples.

Example 4.2.10 (Computation and interpretation of PC scores). Let us go back
to the student grades of Example 4.1.4, where the covariance for first and second

55

year grades was

Cov (X) =

(
1 0.8

0.8 1

)
.

Its eigenvectors are e1 = (1/
√

2, 1/
√

2)T and e2 = (−1/
√

2, 1/
√

2)T, with corre-
sponding eigenvalues λ1 = 1.8, λ2 = 0.2. The principal components are therefore
eT

1 X = (X1 + X2)/
√

2 and eT
2 X = (X2 − X1)/

√
2. That is, the first PC (score)

is proportional to the average grade and the second PC (score) to the difference
between grades. The proportion of variability explained by the first component is
1.8/(1.8 + 0.2) = 0.9.

Now suppose that the first year grades are more variable than the second year
grades, so that

Cov (X) =

(
4 1.6

1.6 1

)
.

Notice that the correlation between (X1, X2) is still 1.6/(
√

4
√

1) = 0.8 as before.
The eigenvectors now are eT

1 = (0.917, 0.397) and eT
2 = (−0.397, 0.917) with cor-

responding eigenvalues λ1 = 4.69, λ2 = 0.307. Hence the principal components
are

eT
1 X = 0.917X1 + 0.397X2,

and
eT

2 X = 0.917X2 − 0.397X1.

As before the first principal component is found by adding up X1 and X2, but
now X1 is assigned a higher weight than X2 because X1 explains more variability
than X2 (since Var(X1) > Var(X2)). Similarly, the second principal component is a
weighted difference of X2 minus X1. The proportion of variability explained by the
first component is 4.69/(4.69 + 0.307) = 0.938, which is higher than before.

Example 4.2.11 (Computation and interpretation of PC scores). Consider the fol-
lowing covariance matrix of 5 variables

Σ =

1 .9 .5 .1 .1
.9 1 .5 .1 .1
.5 .5 1 .5 .5
.1 .1 .5 1 .9
.1 .1 .5 .9 1

 .

Let us find eigenvectors and eigenvalues using R.

define and print Sigma

(Sigma <- matrix(c(1,.9,.5,.1,.1, .9,1,.5,.1,.1, .5,.5,1,.5,.5,

.1,.1,.5,1,.9,

.1,.1,.5,.9,1), nrow=5, byrow=TRUE))

[,1] [,2] [,3] [,4] [,5]

[1,] 1.0 0.9 0.5 0.1 0.1

[2,] 0.9 1.0 0.5 0.1 0.1

56

[3,] 0.5 0.5 1.0 0.5 0.5

[4,] 0.1 0.1 0.5 1.0 0.9

[5,] 0.1 0.1 0.5 0.9 1.0

define and print rounded lambda (the variances)

op <- options(digits = 2) # print only 2 digits

(lambda <- eigen(Sigma)$values)

[1] 2.69 1.70 0.41 0.10 0.10

define and print rounded version of E, the PC loadings

E <- eigen(Sigma)$vectors

rownames(E) = paste('V',1:5, sep='')

colnames(E) <- paste0('PC', 1:5)

E

PC1 PC2 PC3 PC4 PC5

V1 -0.43 5.0e-01 -0.25 0.0e+00 7.1e-01

V2 -0.43 5.0e-01 -0.25 3.9e-17 -7.1e-01

V3 -0.51 -1.1e-15 0.86 -7.4e-17 2.2e-16

V4 -0.43 -5.0e-01 -0.25 -7.1e-01 1.7e-16

V5 -0.43 -5.0e-01 -0.25 7.1e-01 1.4e-16

Percentage of variance explained by first 2 PCs

((lambda[1]+lambda[2])/sum(lambda))

[1] 0.88

options(op); # restore print settings

Here all entries in the first eigenvector have the same sign (first column in E),
and in fact have a similar value. The first PC is computed as Y1 = −(0.43X1 +
0.43X2 + 0.51X3 + 0.43X4 + 0.43X5), which roughly speaking is proportional to the
mean across X1, . . . , X5. Hence the first PC is approximately an average of the
variables in X.

The second PC is Y2 = 0.5(X1 + X2) − 0.5(X4 + X5), which is the difference
between the mean of each block of variables.

Example 4.2.12 (cars dataset). Consider the cars dataset, which measures 7 con-
tinuous characteristics for 32 cars. Below we load the data and compute the PC
loadings.

require(grDevices)

op <- options(digits = 2) # print only 2 digits

data(mtcars)

nn <- rownames(mtcars)

57

cars_pca <- prcomp(mtcars[,1:7])

cars_pca$rot

PC1 PC2 PC3 PC4 PC5 PC6 PC7

mpg -0.0381 0.0092 0.990 0.0678 -0.0910 0.0475 0.0534

cyl 0.0120 -0.0034 -0.063 -0.2701 -0.9155 0.1954 -0.2157

disp 0.8996 0.4355 0.032 -0.0015 0.0085 -0.0035 -0.0031

hp 0.4348 -0.8998 0.023 0.0283 -0.0015 -0.0021 0.0006

drat -0.0027 -0.0039 0.040 -0.0377 0.3099 0.6154 -0.7226

wt 0.0062 0.0049 -0.084 0.1701 -0.0286 0.7598 0.6212

qsec -0.0067 0.0250 -0.073 0.9441 -0.2379 -0.0598 -0.2064

options(op)

We can notice that the first PC score is approximately a weighted average of
disp and hp variables, with the other variables having little to no contribution. The
second PC score is a contrast between disp and hp, with the other variables having
little to no contribution. The third PC is essentially mpg. The 4th PC is essentially
a contrast between a weighted average of qsec, wt, mpg and cyl.

From these examples we get a couple of important observations:

Remark 4.2.13 (Interpretation of PC scores).

1. The results of the PCA can change substantially when the variance
of an input variable Xi changes. We will discuss this issue in the
Section 4.2.7.

2. In order to interpret the meaning of the PC scores, it is important to
look at the entries of the PC loadings (the eigenvectors of Cov(X)).
The entries tell us about the contribution of each variable Xi to any
given PC score Yk. If ek = (ek1, . . . , ekp)

T, then PC score k is

Yk , eT
kX =

p∑
i=1

ekiXi.

Large positive eki indicates that Xi has a positive contribution to Yk,
large negative eki that the contribution is negative, and eki close to
0 means that variable Xi contributes little to that component. This
is an exact interpretation of PC scores. Another way to interpret PC
scores is to look at the expression

X =

p∑
k=1

Ykek.

58

Larger Yk means larger contribution of ek in X, so if e1 = (0.8,−0.6)T

(say) where X = (“age”, “height”)T, then an observation with larger
Y1 (PC scores 1) could be interpreted as having older age but smaller
height. We call such interpretation an approximate interpretation
since the previous statement is only correct if all other PC scores are
kept fixed.

3. The magnitude of eki does not correspond to the value of the correla-
tion between the PC k and variable Xi, see Proposition 4.2.14 below.
Therefore, when interpreting PC scores, be cautious in the terminol-
ogy you use: you can use terms like “weighted average”, “contrast”,
“essentially”, as exemplified in the examples above.

4. In some sense PC scores are weird, because they are linear combina-
tions of the original variables, which could be totally incomparable:
for instance X1 could be the miles/gallon consumption of a car, and
X2 could be the number of cylinders of the car. Then what is the
unit of a linear combination of X1, X2? If one is in such a situa-
tion, then it is best to perform PCA on standardized variables, as
explained in Section 4.2.7. However, if all variables are in the same
unit, then taking a linear combination of them makes more sense,
and you shouldn’t standardize variables.

As mentioned in the remark, the value of the eki is not equal to the correlation
between PC score k and variable Xi, but is related according to the following for-
mula.

Proposition 4.2.14 (Correlation between variables and PC scores).
The correlation between Xi and Yk is equal to

ρXi,Yk =
eki
√
λk√
σii

.

Proof. Left as an exercise.

Hence, the contribution of variable i on component k can either be measured by
eki or ρXi,Yk . The latter is less preferable, as it only measures univariate correlation.
Instead ek1, . . . , ekp can be interpreted as coefficients in a multiple regression, where
coefficients tell us the importance of one variable in the presence of all the remaining
variables.

4.2.7 Principal component analysis on standardized variables

As we illustrated in Example 4.2.10, principal components are affected by changes
in Var(Xi). For instance, the PCA results are affected when we change the units of
measurement for Xi: measuring a distance in meters rather than kilometers means
we multiply the variable by 1000, and hence increase the variance by a factor 106.

59

Thus, Xi measured in meters will have a much greater effect on the principal com-
ponents than when measured in kilometers! Furthermore, the interpretation of PC
scores is a bit puzzling when variables are not measured in the same unit (or repre-
sent different types of quantities), as mentioned in Remark 4.2.13.

Whether this is an issue or not depends on the specific application. As a general
rule, we want to avoid the results being sensitive to the scale in the input measure-
ments, but there are some cases in which we may want to consider that variables
with higher variance are more informative. For instance, this is the case when Xi is
observed in two different groups, so that the total Var(Xi) is the sum of the between
groups variance plus the within-groups variance. In this situation, Var(Xi) tends
to be larger whenever there are differences between groups, and it may be desirable
that these variables have a higher weight on the principal components. Another
example is when all Xis are measured on the same units of measurement, e.g. when
measuring blood pressure at several points over time.

In any case, whenever we want to give the same weight (a priori) to all variables,
an easy fix is to work with standardized variables Zi = Xi/

√
σii, which ensures

that Var(Z1) = · · · = Var(Zp) = 1. In matrix notation, Z = (Z1, . . . , Zp)
T =

V −1/2X where V = diag(Var(X1), . . . ,Var(Xp)), the diagonal matrix with entries
the variances of Xis. It is easy to see that working with standardized variables is
equivalent to obtaining principal components on the correlation matrix (rather than
the covariance matrix).

Cov (Z) = Cov
(
V −1/2X

)
= V −1/2 Cov (X)V −1/2 = Cor(X),

where Cor(X) is the correlation matrix of X. The total variability in Z is Tr(Cov (Z)) =∑p
i=1 1 = p, hence the proportion of explained variability by the first k components

is ∑k
i=1 λi
p

,

where λi is the i-th largest eigenvalue of the correlation matrix of X. In the sample
world, the data matrix with standardized variables is Z = XV −1/2, where V is the
diagonal matrix with the sample variances in the diagonal, that is the i-th diag-
onal entry of V is

(
XTHX/(n− 1)

)
ii
. We now give an example to illustrate how

standardizing the variables changes the PC loadings (and hence scores).

Example 4.2.15 (Link between standardized and non-standardized PCs). Suppose
we observe the random sample from X = (X1, X2)T shown in Figure 20 (top left).
The two variables are highly positively correlated, in fact the sample correlation
coefficient is 0.88, the sample variance of X1 is 0.86 and the sample variance of X2

is 4.39. The covariance is 0.88 ·
√

0.86 ·
√

4.39 = 1.71 The eigenvectors (PC loadings)
v1 and v2 are shown in solid red and dashed red, respectively. On the top right
subfigure of Figure 20, we see the same data after having standardized the variables
to have variance 1. We now see that the PC loadings are different to those in the
top left subfigure. In the bottom subfigures of Figure 20, we see the PC scores
for original (non-standardized) variables (bottom left) and standardized variables
(bottom right). Notice that we cannot go from one to the other just by scaling the
axes. The code for generating the figure is given below.

60

plot_vector <- function(v, alpha=1, ...){
lines(alpha*matrix(c(-v[1], v[1], -v[2], v[2]), 2,2), ...)

}

set.seed(1)

x = rnorm(200)

y = rnorm(200) + 2*x

X = cbind(x,y)

op <- par(mfcol=c(2,2))

par(mai=c(.4,.7,.3,.1))

plot(X, cex=.6, asp=1, xlim=c(-2,2), ylim=c(-5, 5), pch=1, axes=TRUE,

main='Non-standardized variables')

abline(h=0, v=0, lty=3)

Xpca <- prcomp(X)

plot_vector(Xpca$rot[,1], alpha=10, lwd=2, col=2)

plot_vector(Xpca$rot[,2], alpha=10, lty=2, lwd=2, col=2)

par(mai=c(.7,.7,.1,.1))

plot(Xpca$x, cex=.6, asp=1, xlim=c(-2,2), ylim=c(-5, 5), pch=1, axes=TRUE)

abline(h=0, v=0, lty=3)

par(mai=c(.4,.7,.3,.1))

plot(scale(X), cex=.6, asp=1, xlim=c(-2,2), ylim=c(-5, 5), pch=1, axes=TRUE,

yaxt='s', main='Standardized variables')

abline(h=0, v=0, lty=3)

Xpca <- prcomp(X, scale=TRUE)

plot_vector(Xpca$rot[,1], alpha=10, lwd=2, col=2)

plot_vector(Xpca$rot[,2], alpha=10, lty=2, lwd=2, col=2)

par(mai=c(.7,.7,.1,.1))

plot(Xpca$x, cex=.6, asp=1, xlim=c(-2,2), ylim=c(-5, 5), pch=1, axes=TRUE)

abline(h=0, v=0, lty=3)

par(op)

4.2.8 Sampling Properties of Principal Components (not examinable)

Deriving the sampling distribution for (λ̂i, êi) is complex and requires numerous as-
sumptions on the distribution of X and the true values of λ1, . . . , λp. Theorem 4.2.16
considers the perhaps most commonly made assumptions of underlying normality
and eigenvalue multiplicity being equal to 1.

Theorem 4.2.16 (Asymptotic distribution of eigendecomposition).
Assume that λ1 > . . . > λp > 0 and xi are independent observations from

a multivariate Normal distribution. Let λ̂k and êk be the kth eigenvector

61

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

−4 −2 0 2 4

−
4

−
2

0
2

4

Non−standardized variables

x

y

●

●
●

●

●

●

●●
●

●

●

●
● ●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●●
●

●
●

●

●
●

●●

●

●

●
●● ●●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●●

●

●
●

●● ●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

●
● ●

●

●

●

●

●

●●

●

●

●
●

●
●

●
●

●

●●

●

●

●

●

●●

●
●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

−4 −2 0 2 4

−
4

−
2

0
2

4

PC1

P
C

2

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●●

−4 −2 0 2 4

−
4

−
2

0
2

4

Standardized variables

x

y

●

●●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●

●● ●
●

●

●

●

●
●

●

●

●

●

● ●
●

●

●
●

●● ●
●

●

●
●

●
●

● ●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

● ●

●
●
●

●
●●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

● ●●

●

● ●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●
● ●

●●

●

●
●

●

●

●

●

● ●
●●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

−4 −2 0 2 4

−
4

−
2

0
2

4

PC1

P
C

2

Figure 20: Dataset with non-standardized variables (top left) and standardized
variables (right). The thick solid red line represents PC loading 1, and the thick
dashed red line represents PC loading 2. Notice that they are different in the two
plots. The bottom figures represent the PC scores 1 vs. 2 for non-standardized
variables (bottom left) and standardized variables (bottom right).

62

and eigenvalue of the sample covariance matrix. Choosing êk such that
êT
k ek ≥ 0, we have

1.
√
n(λ̂k − λk)

d−→ N(0, 2λ2
k). Further λ̂1, · · · , λ̂p are independent.

2.
√
n(êk − ek)

d−→ Np

(
0,
∑

j 6=k
λjλk

(λj−λk)2
eje

T
j

)
3. Each λ̂k is independent of the corresponding êk.

It is important to emphasize that Theorem 4.2.16 gives the asymptotic distribu-
tion of the sample eigenstructure, that is when n→∞. For instance, we know that
λ̂i > 0 (since the sample covariance matrix is positive definite), whereas its asymp-
totic Normal distribution assigns non-zero probability to λ̂i < 0, hence for small
and even moderately large n the accuracy of the asymptotic approximation is often
suspect. Nevertheless, when the assumptions of the Theorem are reasonable, we can

obtain approximate 1− α confidence intervals as λ̂i ± zα/2
√

2λ̂2
i /n, where zα is the

α-quantile of a N(0, 1) random variable. For small sample sizes, the distribution of
the sample eigenvalues is not symmetric: this is illustrated by Figure 21. Note also
that Theorem 4.2.16 requires assuming that λi 6= λj for i 6= j, but these are precisely
the values we are trying to estimate. Furthermore, notice that important quantities
in the variance of the sample eigenvector are the eigengaps λi − λk, k 6= i, and in
particular, if λi+1 = λi, then the variance is infinite. This is because when equality
of the eigenvalues occurs, the corresponding eigenvectors are not uniquely defined!
Also, when eigenvalues are equal, the sample eigenvalues are close but not equal.
Both of these are illustrated in Figure 22, where we see that when the eigengap
becomes smaller, the variance of the sample eigenvectors increases, and it becomes
infinite when the eigengap is zero: the distribution of the first sample eigenvector
becomes uniform on the circle.

Example 4.2.17 (Code for quantifying the finite sample distribution of sample
eigenvectors and eigenvalues). The code used to get Figures 21 is given below.

rot = matrix(c(1,1, -1 , 1), ncol=2)/sqrt(2)

set.seed(1)

sd_x <- 2

n <- 10

Nrep = 5e4

rep_eigenvalues0 <- array(NA, c(Nrep, 2))

rep_eigenvectors0 <- array(NA, c(Nrep, 2, 2))

for(i in 1:Nrep){
x = rnorm(n, sd=sd_x)

y = rnorm(n)

63

X00 = cbind(x,y) %*% t(rot)

X00_pca <- prcomp(X00)

rep_eigenvectors0[i,,] <- X00_pca$rotation

rep_eigenvalues0[i,] <- X00_pca$sdev^2

}

op <- par(mfrow=c(2,1), mai=c(.4,0.4,1,0.1))

x <- rep_eigenvalues0[,1]

hist(x, 'FD', freq=FALSE, col=1,

main='Distribution of the variance of the 1st PC')

tt <- seq(0,10, len=1e4)

lines(tt, dnorm(tt, mean=sd_x^2, sd=sqrt(2/n)*sd_x^2), col=2, lwd=2)

#lines(tt, dnorm(tt, mean=sd_x^2, sd=sd(x)), col=2, lwd=2)

abline(v=sd_x^2, col=2, lwd=2, lty=2)

lines(bhist£breaks, c(bhist£density,0), type='s', col=3)

#

x <- rep_eigenvalues0[,1]/(rowSums(rep_eigenvalues0))

hist(x, 'FD', col=1, freq=FALSE,

main='Distribution of % of variance explained by 1st PC')

lines(tt, dnorm(tt, mean=mean(x), sd=sd(x)), col=2, lwd=2)

abline(v=sd_x^2/(sd_x^2 + 1), col=2, lwd=2, lty=2)

lines(bhist2£breaks, c(bhist2£density,0), type='s', col=3)

par(op)

Here is the code for Figure 22.

rot = matrix(c(1,1, -1 , 1), ncol=2)/sqrt(2)

plot_vector <- function(v, alpha=1, ...){
lines(alpha*matrix(c(-v[1], v[1], -v[2], v[2]), 2,2), ...)

}

n <- 50

Nrep = 1e3

sd_seq <- c(2,1.4,1)

rep_eigenvalues <- array(NA, c(length(sd_seq), Nrep, 2))

rep_eigenvectors <- array(NA, c(length(sd_seq), Nrep, 2, 2))

set.seed(1)

for(sd_i in seq(along=sd_seq))

{
sd_x <- sd_seq[sd_i]

for(i in 1:Nrep){
x = rnorm(n, sd=sd_x)

y = rnorm(n)

64

Distribution of the variance of the 1st PC

x

0 5 10 15

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Distribution of % of variance explained by 1st PC

0.5 0.6 0.7 0.8 0.9 1.0

0
1

2
3

4
5

Figure 21: Sample distribution of the variance explained by the first PC (top) and
sample distribution of the percentage of variance explained by the first PC (bottom).
The distributions have been computed using N = 5 · 104 replicates of a sample of
size 10. Overlaid are the Gaussian density estimate (notice in particular in the top
figure, the Gaussian gives non-zero probability for negative values. . .). The true
parameter is denoted by the red vertical dashed line. Notice that the distributions
are asymmetric. This asymmetry goes away for larger sample sizes (this cannot be
seen in this Figure).

65

X0 = cbind(x,y) %*% t(rot)

X0_pca <- prcomp(X0)

rep_eigenvectors[sd_i, i,,] <- X0_pca$rotation

rep_eigenvalues[sd_i, i,] <- X0_pca$sdev^2

}
}

op <- par(mfrow=c(3,2))

for(sd_i in seq(along=sd_seq)){
par(mai=c(0.1,0.0,0.1,0))

#

plot(X0, asp=1, xlim=c(-5,5), ylim=c(-5,5), axes=TRUE, xaxt='n',

yaxt='n', type='n')

for(i in 1:min(Nrep,5e2)){
plot_vector(rep_eigenvectors[sd_i, i,,1], alpha=10, lwd=.1,

col=gray(0, alpha=.2))

}
if(sd_seq[sd_i] != 1) ## plot true eigenvector if well defined

plot_vector(rot[,1], alpha=10, lwd=2, col=1, lty=2)

#

h1 <- hist(rep_eigenvalues[sd_i, ,1], 'FD', plot=FALSE)

h2 <- hist(rep_eigenvalues[sd_i, ,2], plot=FALSE, 'FD')

ylim <- range(c(h1$density, h2$density))

xlim <- range(c(h1$breaks, h2$breaks))

par(mai=c(0.3,0.3,0.1,0))

plot(h1$breaks, c(h1$density, 0), col=1, xlim=xlim, ylim=ylim,

type='s', bty='n')

abline(v=sd_seq[sd_i]^2, col=1, lwd=2, lty=2)

lines(h2$breaks, c(h2$density,0), type='s', col=2)

abline(v=1, col=2, lwd=2, lty=2)

}
par(op)

4.2.9 Principal components plots (EDA)

A plot of the PC scores (or commonly known as principal components plot) gives a
low-dimensional graphical representation of the data. This serves many purposes,
for instance by allowing one to get an idea of the (Euclidean) distances between
different observations, helps identifying outliers, allows one to see clusters in the
data, and if labels are available, allows one to establish how easy (or difficult) a
classification problem might be. All of these can also give insight into formulating
a model for the data.

The PC scores are obtained simply by projecting X, the n× p matrix containing
the observed data, on the first few eigenvectors. Letting E = (ê1, . . . , êp), we can
compute

Y = XE,

66

Figure 22: Empirical distribution of eigenvectors and eigenvalues of the sample
covariance. Each row corresponds to a covariance with a specific eigengap (the dif-
ference between first and second eigenvalue), and the difference between the rows
is only in the eigenvalues of the covariance. The true eigenvalues (unknown) are
depicted by dashed vertical lines in the right-hand side plot (black for largest eigen-
value, red for 2nd largest eigenvalue). Overlayed is a histogram of the distribution
of the sample eigenvalues, in the corresponding color, obtained by simulating 103

replicates of a sample size 50 dataset. On the left are plotted in thin lines the first
PC loading for half of the 103 replicates. Overlaid as a thick black line is the true
1st eigenvector of the covariance. In the bottom row, the first two eigenvalues are
equal, and hence the true 1st eigenvector is not uniquely defined.

67

which is the n× p matrix whose columns contain the PC scores. Plotting column k
versus column l of Y gives a 2D scatterplot of the PC scores k and l of the data X.

Example 4.2.18 (cars dataset PCA). Consider the cars dataset, which measures
7 continuous characteristics for 32 cars. Below we load the data, standardize all
variables to 0 mean and variance 1, and obtain the eigendecomposition of the co-
variance matrix (equivalently, the correlation matrix as the data are standardized).
Two components explain roughly 90% of the variance, see R code below), hence we
plot the two first principal components and add labels to identify each car.

require(grDevices)

op <- options(digits = 2) # print only 2 digits

data(mtcars)

nn <- rownames(mtcars)

column centering and scaling to have variance 1 in each column

z <- scale(mtcars[,1:7], center=TRUE, scale=TRUE)

check:

colMeans(z)

mpg cyl disp hp drat wt qsec

7.1e-17 -1.5e-17 -9.1e-17 1.0e-17 -2.9e-16 4.7e-17 5.3e-16

S <- cov(z)

diag(S)

mpg cyl disp hp drat wt qsec

1 1 1 1 1 1 1

l <- eigen(S)$values

v <- eigen(S)$vector

print(l) # the eigenvalues or percentage of variance for each PC

[1] 5.086 1.157 0.345 0.158 0.129 0.076 0.049

print(100*cumsum(l)/sum(l)) # the cumulative percentage of variance explained

[1] 73 89 94 96 98 99 100

plot(l,type='b') # scree-plot

print(v) # the principal component scores (the columns of v)

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 0.41 -0.083 0.24 0.7668 -0.21 -0.090 0.351

[2,] -0.42 -0.078 0.19 0.1939 0.24 0.781 0.273

[3,] -0.42 0.082 -0.12 0.5877 0.15 -0.162 -0.638

[4,] -0.39 -0.337 -0.20 -0.0069 -0.83 0.046 0.039

[5,] 0.33 -0.449 -0.76 0.1171 0.22 0.233 -0.037

[6,] -0.39 0.322 -0.44 0.1073 0.17 -0.366 0.613

[7,] 0.24 0.749 -0.29 0.0614 -0.33 0.407 -0.131

options(op)

68

●

●

●
● ● ● ●

1 2 3 4 5 6 7

0
1

2
3

4
5

Index

l

pc <- z %*% v

xlim <- range(pc[,1:2])

op <- par()

layout(c(1,1,2))

plot(pc[,1:2],xlab='PC 1',ylab='PC 2',xlim=xlim,ylim=xlim,

main="PC Scores 1 vs 2")

text(pc[,1:2],nn,pos=3)

#BOOTSTRAP (NON-EXAMINABLE)

B <- 10^4

lb <- matrix(NA,nrow=B,ncol=ncol(z))

for (b in 1:B) {
zb <- z[sample(1:nrow(z),replace=TRUE),]

Sb <- cov(zb)

lb[b,] <- eigen(Sb)$values

}
propvar <- rowSums(lb[,1:2])/rowSums(lb)

quantile(propvar,probs=c(.025,.975))

2.5% 97.5%

0.8718952 0.9259666

hist(propvar, main='Bootstrap samples',

xlab='Proportion explained variance by Components 1-2', cex.lab=1.3, 'fd')

par(op)

The resulting principal components plot is in Figure 23 (top) We do not detect
any obvious outliers in the plot, and we observe that cars from the same manu-

69

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2 0 2 4

−
2

0
2

4
PC Scores 1 vs 2

PC 1

P
C

 2

Mazda RX4

Mazda RX4 Wag

Datsun 710

Hornet 4 Drive

Hornet Sportabout

Valiant

Duster 360

Merc 240D

Merc 230

Merc 280

Merc 280CMerc 450SEMerc 450SL
Merc 450SLC

Cadillac Fleetwood
Lincoln Continental

Chrysler Imperial

Fiat 128

Honda Civic

Toyota Corolla

Toyota Corona

Dodge Challenger
AMC Javelin

Camaro Z28

Pontiac Firebird

Fiat X1−9

Porsche 914−2

Lotus Europa

Ford Pantera L

Ferrari Dino

Maserati Bora

Volvo 142E

Bootstrap samples

Proportion explained variance by Components 1−2

F
re

qu
en

cy

0.84 0.86 0.88 0.90 0.92 0.94

0
10

0
20

0
30

0
40

0
50

0
60

0

Figure 23: PC Scores 1-2 and bootstrap histrogram for the percentage of variance
explained by first 2 PCs.

70

facturer often appear nearby in the plot, hence suggesting that they had similar
values for the 7 recorded characteristics. The bottom panel shows a histogram of
the bootstrap samples of

∑2
i=1 λ̂

(b)
i /
∑p

i=1 λ̂
(b)
i . The histogram is roughly centred on

the 89.2% in the observed data, but also characterizes the uncertainty around this
number.

Example 4.2.19 (Zip code PCA). We go back to our ZIP code example. We now
perform a PCA on the dataset. We plot in Figure 24 the PC scores 1 versus 2,
where each point (observation) has been given a colour corresponding to the digit
it represents. Notice how some digits are well separated, while others or not. We
can go beyond just looking at the first 2 PCs, and do a pairs plot of the PC scores,
see Figure 26. To interpret the PC scores, we can look at the PC loadings, given in
Figure 27. We see for instance that PC score 1 is given by the difference between
a weighted average around the center, and a weighted average in the center of the
image (this is the exact interpretation). The shape of the positive values resembles
a “0”, and the shape of the negative values resembles a “1”, so one would expect to
see that the digits “1” have low PC 1 values, and digits “0” have high PC 1 values.
An inspection of Figure 24 shows that this is indeed the case. The screeplot for
the Zip code dataset is shown in Figure 25. To get the approximate interpretation
of PC scores, look at Figures 28, 29, 30, and 31, which show the effect of negative
and positive scores for PCs 1, 2, 3, and 4, respectively. We can also look at how
well individual observations are approximated by using only the first K principal
components. Figure 32 show this for an image of the digit “9” for K = 1, . . . , 15.
Figure 33 show this for an image of the digit “4” for K = 1, . . . , 41. We notice that
about 6 PCs are enough to recognise the digit in the first case, but we need up to
about 24 PCs to recognise the digit in the second case. There is no clear shoulder
in the screeplot, but we need 39 PCs to get at least 90% of the variance explained.

Loading required package: spam

Loading required package: dotCall64

Loading required package: grid

Spam version 2.2-0 (2018-06-19) is loaded.

Type ’help(Spam)’ or ’demo(spam)’ for a short introduction

and overview of this package.

Help for individual functions is also obtained by adding the

suffix ’.spam’ to the function name, e.g. ’help(chol.spam)’.

##

Attaching package: ’spam’

The following objects are masked from ’package:base’:

##

backsolve, forwardsolve

Loading required package: maps

See www.image.ucar.edu/~nychka/Fields for

71

a vignette and other supplements.

72

Figure 24: PC scores 1 versus 2 for the Zip codes. Notice that some digits are very
well separated, such as 0 and 1, while other are not so clearly separated, such as 3
and 5.

73

●

●

●

●

●

●

●
●

●●
●●
●
●●●

0 50 100 150 200 250

0
5

10
15

20

Index

zi
p.

pc
$s

de
v^

2

Figure 25: Screeplot for the Zip code dataset.

74

Figure 26: Pairs plot of the PC scores for the Zip codes data. We now see for
instance that PC 4 is reasonably good at distinguishing digits 3 and 4. This wasn’t
the case with PCs 1 and 2.

75

PC loading 1 PC loading 2

PC loading 3 PC loading 4

PC loading 5 PC loading 6

Figure 27: PC Loadings of the ZIP CODE dataset. Red denotes negative values,
blue positive values. Notice that each PC loading is a 16× 16 image.

76

Effect of PC 1, nu = −6.97 Effect of PC 1, nu = −5.23 Effect of PC 1, nu = −3.49

Effect of PC 1, nu = −1.74 Effect of PC 1, nu = 0 Effect of PC 1, nu = 1.74

Effect of PC 1, nu = 3.49 Effect of PC 1, nu = 5.23 Effect of PC 1, nu = 6.97

Figure 28: Effect of PC Loading 1 of the ZIP CODE dataset. Each subplot show
the image for x+ν ∗e1. The case ν = 0 is just the (sample) mean digit. Red denotes
negative values, blue positive values.

77

Effect of PC 2, nu = −4.94 Effect of PC 2, nu = −3.7 Effect of PC 2, nu = −2.47

Effect of PC 2, nu = −1.23 Effect of PC 2, nu = 0 Effect of PC 2, nu = 1.23

Effect of PC 2, nu = 2.47 Effect of PC 2, nu = 3.7 Effect of PC 2, nu = 4.94

Figure 29: Effect of PC Loading 2 of the ZIP CODE dataset. Each subplot show
the image for x+ν ∗e2. The case ν = 0 is just the (sample) mean digit. Red denotes
negative values, blue positive values.

78

Effect of PC 3, nu = −4.23 Effect of PC 3, nu = −3.17 Effect of PC 3, nu = −2.11

Effect of PC 3, nu = −1.06 Effect of PC 3, nu = 0 Effect of PC 3, nu = 1.06

Effect of PC 3, nu = 2.11 Effect of PC 3, nu = 3.17 Effect of PC 3, nu = 4.23

Figure 30: Effect of PC Loading 3 of the ZIP CODE dataset. Each subplot show
the image for x+ν ∗e3. The case ν = 0 is just the (sample) mean digit. Red denotes
negative values, blue positive values.

79

Effect of PC 4, nu = −3.89 Effect of PC 4, nu = −2.92 Effect of PC 4, nu = −1.94

Effect of PC 4, nu = −0.97 Effect of PC 4, nu = 0 Effect of PC 4, nu = 0.97

Effect of PC 4, nu = 1.94 Effect of PC 4, nu = 2.92 Effect of PC 4, nu = 3.89

Figure 31: Effect of PC Loading 4 of the ZIP CODE dataset. Each subplot show
the image for x+ν ∗e4. The case ν = 0 is just the (sample) mean digit. Red denotes
negative values, blue positive values.

80

Original image Approximation by 1 PCs Approximation by 2 PCs Approximation by 3 PCs

Approximation by 4 PCs Approximation by 5 PCs Approximation by 6 PCs Approximation by 7 PCs

Approximation by 8 PCs Approximation by 9 PCs Approximation by 10 PCs Approximation by 11 PCs

Approximation by 12 PCs Approximation by 13 PCs Approximation by 14 PCs Approximation by 15 PCs

Figure 32: Approximations of observation i = 332, using k = 1, 2, . . . , 15 PCs. The
top-left subplot is the original observation (the i-th row of X). Each following subplot
is the i-th row Xk. Notice that we can recognise the digit with 6 PCs already. Red
denotes negative values, blue positive values.

81

Original image Approximation by 1 PCs Approximation by 2 PCs Approximation by 3 PCs Approximation by 4 PCs Approximation by 5 PCs

Approximation by 6 PCs Approximation by 7 PCs Approximation by 8 PCs Approximation by 9 PCs Approximation by 10 PCs Approximation by 11 PCs

Approximation by 12 PCs Approximation by 13 PCs Approximation by 14 PCs Approximation by 15 PCs Approximation by 16 PCs Approximation by 17 PCs

Approximation by 18 PCs Approximation by 19 PCs Approximation by 20 PCs Approximation by 21 PCs Approximation by 22 PCs Approximation by 23 PCs

Approximation by 24 PCs Approximation by 25 PCs Approximation by 26 PCs Approximation by 27 PCs Approximation by 28 PCs Approximation by 29 PCs

Approximation by 30 PCs Approximation by 31 PCs Approximation by 32 PCs Approximation by 33 PCs Approximation by 34 PCs Approximation by 35 PCs

Approximation by 36 PCs Approximation by 37 PCs Approximation by 38 PCs Approximation by 39 PCs Approximation by 40 PCs Approximation by 41 PCs

Figure 33: Approximations of observation i = 1111, using k = 1, 2, . . . , 41 PCs.
The top-left subplot is the original observation (the i-th row of X). Each following
subplot is the i-th row Xk. Notice that we can recognise the digit only with about
31 or more PCs. Red denotes negative values, blue positive values.

82

4.3 The Biplot

The biplot is a graphical tool that jointly represents rows and columns of a data
matrix X with n rows and p columns. It is directly related to principal components
analysis, but unlike with principal components we can include individuals (rows)
and variables (columns) in a single plot. Without loss of generality suppose that
the columns in X are centred at 0, otherwise we replace X by HX, where H is the
n× n centering matrix. Recall that the sample covariance matrix can be expressed
as S = 1

n−1
XTX (no H here since the data matrix is already column-centered).

The biplot is based on the singular value decomposition of X, which has already
been introduced in Section 2.2. Let X = ULV T =

∑q
j=1 ljjujv

T
j be an SVD of X.

Being quite informal with the notation, writing X = (UL1/2)(L1/2V T), we notice
that (X)ij can be expressed as an inner-product between the i-th row of UL1/2 and
j-th column of L1/2V T. If we could plot (as vectors) these rows and columns, then
we could “read” the value of (X)ij from the plot. However, the rows and columns
we are talking about are vectors in Rq, where q is the rank of X. Recall that by the
Young–Eckart–Mirsky Theorem (Theorem 2.2.3), the best rank k approximation of
X is given by Xk =

∑k
j=1 ljjujv

T
j . Now if we take k = 2 or k = 3, we could plot the

aforementioned rows and columns in the same plot, and use this plot to “read” the
entries of X. This is the idea behind the biplot:

Definition 4.3.1 (The Biplot). We approximate the n× p column cen-
tered data matrix X using the first k singular vectors:

X ≈ Xk =
k∑
j=1

ljjujv
T
j =

(
u1 . . . uk

)l11 . . . 0
...

...
0 . . . lkk

vT

1

. . .
vT
k

=

u11 . . . uk1
...

...
u1n . . . ukn

l11 . . . 0

...
...

0 . . . lkk

v11 . . . v1p

...
...

vk1 . . . vkp

=

u11

√
l11 . . . uk1

√
lkk

...
...

u1n

√
l11 . . . ukn

√
lkk

v11

√
l11 . . . v1p

√
l11

...
...

vk1

√
lkk . . . vkp

√
lkk

 = ŨkṼ
T
k .

Then the coordinates of the rows in X (the observations) in the k-
dimensional biplot are given by the rows in the n × k matrix Ũk, and the
coordinates of the columns of X (the variables) are given by the rows in the
p× k matrix Ṽk. Usually, we take k = 2, as 2-dimensional plots are
easy to visualize.

As an important remark, Definition 4.3.1 is based on splitting the liis evenly between
Ũ and Ṽ . Nothing stops us from using the alternative approximation X ≈ UṼ T

where now Ṽ T contains lii instead of
√
lii. This alternative emphasizes relations

between columns of X. Similarly, we could define X ≈ ŨV T where Ũ contains
liis, which emphasizes relations between rows of X. All these alternatives result in

83

exactly the same coordinates up to a scale factor given by lii, i.e. the biplot looks
similar except that either rows or columns are emphasised by being more spread
out. Different software implementations may produce different versions of biplots,
depending on their emphasis on rows, columns or neither. For our purposes, we will
stick to the choice in Definition 4.3.1, as it emphasizes equally the representation of
rows and columns.

Example 4.3.2 (toy data Biplot). Consider the data matrix−1 −1
0 0.2
1 1

with 2 variables and 3 individuals. Its column-centered version is

X =

−1 −1.07
0 0.13
1 0.93

and is plotted in Figure 34 (left). Below is the code to compute and plot X on
a 2-dimensional biplot. The matrices Ũ , Ṽ contain as rows the coordinates of the
observations, respectively the variables, on a 2-dimensional biplot, and are computed
using the SVD of X using the following code:

X <- matrix(c(-1,-1,0,0.2,1,1),ncol=2,byrow=TRUE) # the data matrix

X <- scale(X, center=TRUE, scale=FALSE) # column centered data matrix

(X.svd <- svd(X)) # computing the SVD of X

$d

[1] 2.0033417 0.1152774

##

$u

[,1] [,2]

[1,] -0.72953259 0.3666727

[2,] 0.04721843 -0.8151301

[3,] 0.68231416 0.4484574

##

$v

[,1] [,2]

[1,] 0.7047459 0.7094598

[2,] 0.7094598 -0.7047459

X.svd$u %*% diag(X.svd$d) %*% t(X.svd$v) ## recover X using its SVD

[,1] [,2]

[1,] -1 -1.0666667

[2,] 0 0.1333333

[3,] 1 0.9333333

84

(Utilde <- X.svd$u %*% diag(sqrt(X.svd$d))) # coordinates of the observations

[,1] [,2]

[1,] -1.03257643 0.1244947

[2,] 0.06683271 -0.2767573

[3,] 0.96574373 0.1522626

(Vtilde <- X.svd$v %*% diag(sqrt(X.svd$d))) # coordinates of the variables

[,1] [,2]

[1,] 0.9974934 0.2408796

[2,] 1.0041656 -0.2392791

op <- par(mfrow=c(1,2), mai=c(.8, .8, .1, .1))

nn <- paste("Indiv.",1:nrow(X))

plot(X,xlab='x1',ylab='x2',cex=1.25,cex.lab=1.25)

text(X[,1:2],nn,pos=c(4,1,2),cex=1.25)

xlim <- ylim <- range(c(Utilde, Vtilde))

plot(Utilde,xlab='First biplot component',ylab='Second biplot

component',xlim=xlim,ylim=ylim,cex.lab=1.25)

text(Utilde[,1:2],nn,pos=c(4,1,2),cex=1.25)

arrows(x0=0, y0=0, x1=Vtilde[,1], y1=Vtilde[,2], col='red')

text(.8*Vtilde[,1], Vtilde[,2], paste('Variable',1:ncol(X)), pos=c(3,1),

col='red', cex=1.25)

par(op)

Figure 34 (right) represents these coordinates in the biplot, where individuals
are shown as dots and variables as arrows. Individual 3 is close to the direction
of growth of variables 1 and 2, indicating that it takes a large positive value for
both variables, whereas individual 1 is located in the opposite direction, indicating
large negative values. Individual 2 does not have particularly large values for either
variable and hence appears close to the centre of the biplot. Note that the biplot
mimics what we could already see in the plot with the original observations in this
simple example.

Remark 4.3.3 (Relationship between biplot and principal compo-
nents).

Let X = ULV T be the singular value decomposition of a column-centred
n × p matrix X. This implies that we have an eigendecomposition of the
form S = V ΛV T for the sample covariance S = XTX/(n− 1).

Let the first k principal components scores Y(k) be the first k columns
in Y = XV , as usual. Then Y (k) = ŨkL

1/2
k , where Ũk is defined in Defini-

tion 4.3.1 and Lk is the k×k upper-left submatrix of L. That is, the first k

85

●

●

●

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x1

x2

Indiv. 1

Indiv. 2

Indiv. 3

●

●

●

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

First biplot component
S

ec
on

d
bi

pl
ot

 c

om
po

ne
nt

Indiv. 1

Indiv. 2

Indiv. 3

Variable 1

Variable 2

Figure 34: Biplot for data in Example 4.3.2

PC scores are scaled versions of the row coordinates from the k-dimensional
biplot.

Proof. Left as an exercise.

The implication of Definition 4.3.1 is that the coordinates of individuals (rows
in X) in a biplot are simply a re-scaled version of their coordinates in a principal
components plot.

Example 4.3.4 (cars dataset Biplot). Figure 35 shows a biplot for the cars dataset.
The car positions (rows) are very similar to those in the principal component plot
(Figure 23). The variables are indicated as red arrows, and help appreciate relation-
ships amongst them and with each car. For instance, horse power (hp) and number
of cylinders (cyl) grow in the same direction, whereas they are both opposed to con-
sumption in miles per gallon (mpg) which indicades that cars with more cylinders
tend to run less miles per gallon (higher consumption). The projection of cars on
each arrow indicates the value of that variable for that particular car, for instance
the Toyota Corolla and Fiat 128 have largest projections on mpg, suggesting their
mpg is very high. The plot also shows that the cars towards the (top) right have
more horse power (hp) than the one on the (bottom) left.

Here is a more in-depth interpretation of the biplot1. The data falls into 3
categories: 4 cylinder cars, V6 and V8. Looking at the data, you will notice the
large majority of cars from America are V8, European cars was overall a mix and
Japan was mainly 4 cylinder. An annotated biplot (Figure 36) shows clearly the
3 groups which are 4 cylinders cars on the left (in yellow), V6 in the middle (in
purple) and V8 on the right (in green). Also the red box shows the cars which have

1from Alex Murphy (2018–19 cohort), which I thank for sharing it with the class.

86

particularly large hp. Notice that the Lincoln and the Cadillac aren’t in the red
square, but still have a high hp; however it is lower than those in the red box, and
they also have the larger wt (weight), so you expect them to be near the wt arrow,
which they are indeed.

Below is the R code used to produce Figure 35.

require(grDevices)

data(mtcars)

nn <- rownames(mtcars)

print the data, ordered by decreasing hp

mtcars[mtcars$hp %>% order(decreasing=TRUE),1:7] %>% round(2)

mpg cyl disp hp drat wt qsec

Maserati Bora 15.0 8 301.0 335 3.54 3.57 14.60

Ford Pantera L 15.8 8 351.0 264 4.22 3.17 14.50

Duster 360 14.3 8 360.0 245 3.21 3.57 15.84

Camaro Z28 13.3 8 350.0 245 3.73 3.84 15.41

Chrysler Imperial 14.7 8 440.0 230 3.23 5.34 17.42

Lincoln Continental 10.4 8 460.0 215 3.00 5.42 17.82

Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.25 17.98

Merc 450SE 16.4 8 275.8 180 3.07 4.07 17.40

Merc 450SL 17.3 8 275.8 180 3.07 3.73 17.60

Merc 450SLC 15.2 8 275.8 180 3.07 3.78 18.00

Hornet Sportabout 18.7 8 360.0 175 3.15 3.44 17.02

Pontiac Firebird 19.2 8 400.0 175 3.08 3.85 17.05

Ferrari Dino 19.7 6 145.0 175 3.62 2.77 15.50

Dodge Challenger 15.5 8 318.0 150 2.76 3.52 16.87

AMC Javelin 15.2 8 304.0 150 3.15 3.44 17.30

Merc 280 19.2 6 167.6 123 3.92 3.44 18.30

Merc 280C 17.8 6 167.6 123 3.92 3.44 18.90

Lotus Europa 30.4 4 95.1 113 3.77 1.51 16.90

Mazda RX4 21.0 6 160.0 110 3.90 2.62 16.46

Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.88 17.02

Hornet 4 Drive 21.4 6 258.0 110 3.08 3.21 19.44

Volvo 142E 21.4 4 121.0 109 4.11 2.78 18.60

Valiant 18.1 6 225.0 105 2.76 3.46 20.22

Toyota Corona 21.5 4 120.1 97 3.70 2.46 20.01

Merc 230 22.8 4 140.8 95 3.92 3.15 22.90

Datsun 710 22.8 4 108.0 93 3.85 2.32 18.61

Porsche 914-2 26.0 4 120.3 91 4.43 2.14 16.70

Fiat 128 32.4 4 78.7 66 4.08 2.20 19.47

Fiat X1-9 27.3 4 79.0 66 4.08 1.94 18.90

Toyota Corolla 33.9 4 71.1 65 4.22 1.84 19.90

Merc 240D 24.4 4 146.7 62 3.69 3.19 20.00

Honda Civic 30.4 4 75.7 52 4.93 1.62 18.52

z <- scale(mtcars[,1:7], center=TRUE, scale=TRUE)

87

#a <- prcomp(z)

#plot(a$x[,1:2])
#arrows(x0=0, y0=0, a$rot[,1], a$rot[,2])

svd1 <- svd(z)

u <- svd1$u; v <- svd1$v; l <- diag(svd1$d)

#head(round(z,3))

#head(round(u %*% l %*% t(v),3))

rows <- u[,1:2] %*% sqrt(l[1:2,1:2])

cols <- v[,1:2] %*% sqrt(l[1:2,1:2])

xlim <- range(cols[,1])

ylim <- range(cols[,2])

plot(rows,xlab='First biplot component',

ylab='Second biplot component',xlim=xlim,ylim=ylim)

text(rows[,1:2],nn,pos=3)

arrows(x0=0,y0=0,x1=cols[,1],y1=cols[,2],col='red')

text(cols[,1:2],colnames(z),pos=3,col='red')

Figure 37 shows a biplot in a concrete application. Notice that this biplot uses
a scaling of the row and column coordinates that is different to the one we have
introduced.

4.4 Canonical Correlation Analysis

A common data analysis task is to study the relationship between two (sets of)
variables. When we have two univariate random variables X and Y , a standard
approach would be to plot values of X against Y or to compute Cov(X, Y). When,
instead, these variables are multivariate, and we have X = (X1, . . . , Xp) and Y =
(Y1, . . . , Yq) with p and q not too large we may plot all pairs of variables. We may
also compute the natural extension of the covariance, the cross-covariance matrix
Cov(X,Y) = (Cov(Xi, Yj))ij from Definition 4.1.1.

When p and q are large, however, it is infeasible to look at all pairwise plots.
Analogous to principal component analysis, we may instead choose to look at lin-
ear projections of the variables aTX and bTY, and study the relationship between
these projections. But how should we choose a and b? A canonical correlation
analysis chooses these vectors so as to maximise the correlation between the projec-
tions.

Definition 4.4.1 (Canonical variables). Let X ∈ Rp and Y ∈ Rq be
random vectors with E[|X|2 + |Y|2] < ∞. The first pair of canonical
variables is (aT1 X,bT1 Y), where a1,b1 are vectors such that

Cov(aT1 X,bT1 Y)√
Var(aT1 X)Var(bT1 Y)

≥ Cov(aTX,bTY)√
Var(aTX)Var(bTY)

∀a ∈ Rp,b ∈ Rq.

88

●

●

●

●

●

●

●

●

●

●

● ●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0

First biplot component

S
ec

on
d

bi
pl

ot
 c

om
po

ne
nt

Mazda RX4
Mazda RX4 Wag

Datsun 710

Hornet 4 Drive

Hornet Sportabout

Valiant

Duster 360

Merc 240D

Merc 230

Merc 280
Merc 280C Merc 450SEMerc 450SL

Merc 450SLC

Cadillac FleetwoodLincoln Continental

Chrysler Imperial

Fiat 128

Honda Civic

Toyota Corolla

Toyota Corona

Dodge Challenger
AMC Javelin

Camaro Z28

Pontiac Firebird
Fiat X1−9

Porsche 914−2
Lotus Europa

Ford Pantera L

Ferrari Dino

Maserati Bora

Volvo 142E

mpg cyl

disp

hp

drat

wt

qsec

Figure 35: Biplot for the mtcars dataset. Points indicate cars, arrows indicate
variables.

89

Figure 36: Annotated Biplot (by Alex Murphy).

For k = 2, . . . ,min(p, q), the k-th pair of canonical variables is (aTkX,bTkY),
where ak,bk are chosen to maximise

Cov(aTX,bTY)√
Var(aTX)Var(bTY)

over all vectors a ∈ Rp,b ∈ Rq such that

Cov(aTX, aTj X) = Cov(bTY,bTj Y) = 0 for j = 1, . . . , k − 1.

Some remarks are in order.

Remark 4.4.2. 1. You should compare this with the definition of prin-
cipal components (Definition 4.2.1). There we maximised variances,
whereas here we maximise correlations, which are standardised co-
variances.

2. As with PCA, these variables are not unique. In PCA we fixed |vk| =
1. In CCA it is common to make the corresponding restriction that

90

Figure 37: A biplot taken from Lim, Y., Totsika, M., Morrison, M., and Pun-
yadeera, C. (2017). The saliva microbiome profiles are minimally affected by collec-
tion method or DNA extraction protocols. Scientific reports, 7(1), 8523.

Var(aTkX) = Var(bTkY) = 1. This just changes the scale of the
canonical variables.

As with PCA (cf. Theorem 4.2.3), these canonical variables can be given in a
more explicit form. For simplicity we will restrict to the setting where Cov(X) = Ip
and Cov(Y) = Iq, but you may wish to try and extend the result to hold in more
generality.

Theorem 4.4.3. Let X ∈ Rp and Y ∈ Rq be random vectors with E[|X|2+
|Y|2] < ∞ and ΣX = Cov(X) = Ip and ΣY = Cov(Y) = Iq. Write Σ for
the p× q cross-covariance matrix of X and Y, and write

Σ = ULV T = `1u1v
T
1 + . . .+ `rurv

T
r

for its singular value decomposition, where r = min(p, q). The canonical
variables are given by (uT1 X,vT1 Y), . . . , (uTr X,vTr Y).

Proof. See video.

91

92

5 Multivariate Inference

In the previous Section, we saw descriptive methods for multivariate data. We now
focus on probability theory and statistical inference. In Section 5.1 we introduce
some common probability distributions for random vectors and random matrices.
Section 5.2 discusses how to estimate their parameters, provide confidence intervals
and confidence regions, Section 5.3 shows how to test hypotheses related to the mean
or covariance of multivariate Normal distributions, and Section 5.4 shows how to
check multivariate normality.

5.1 Multivariate probability distributions

Throughout this section we let X = (X1, . . . , Xp)
T be a random vector taking values

in Rp, and let x = (x1, . . . , xp) be an observed value of X. Also, Σ will denote a
symmetric positive semi-definite matrix (SPD).

5.1.1 Multivariate Normal distribution

The multivariate normal distribution is one of the most important multivariate
distributions. It is defined as follows.

Definition 5.1.1 (Multivariate Normal Distribution). A random vec-
tor X ∈ Rp is said to follow a multivariate normal distribution (MVN) if

X = µ + AZ,

for some non-random µ ∈ Rp, some non-random p × l matrix A, and

Z = (Z1, . . . , Zl)
T, where Z1, . . . , Zl

iid∼ N(0, 1), l ≥ 1.

Notice that EX = µ and Cov(X) = AAT, and both are well defined. Furthermore,
for any t ∈ Rp, tTX = tTµ + (tTA)Z, and therefore tTX is a normal random
variable, with mean E

[
tTX

]
= tTµ and variance Var(tTX) = tTAATt. This implies

the following result.

Proposition 5.1.2 (MGF of MVN). The moment generating function
(MGF) of a MVN X = µ+ AZ is

E
[
exp(tTX)

]
= exp

(
tTµ +

1

2
tTAATt

)
, t ∈ Rp.

Thus the distribution of X is uniquely defined by µ = EX and AAT =
Cov(X). We therefore write X ∼ Np(µ,Σ), where Σ = AAT.

Example 5.1.3. Notice in particular that if Z = (Z1, . . . , Zl)
T is defined as above,

then Z ∼ Nl(0, I), where I is the l × l identity matrix. We say that Z follows an
l-dimensional standard normal distribution, or that it is an l-dimensional
standard normal random vector.

93

Example 5.1.4. X = 0 · Y ∈ R, where Y ∼ N(0, 1), is multivariate normal, with
mean 0 and covariance 0. X takes value 0 with probability 1. Therefore multivariate
normal distributions contain as special cases distributions that are point masses.

Example 5.1.5. X = (Y1, 0)T = AY, where

A =

(
1 0
0 0

)
,

is MVN. Notice that P(X ∈ R × {0}) = 1, thus X takes value only on the vertical
line x = 0. This is an example of a MVN distribution which is singular distribution
(it is concentrated on a set of measure 0 with respect to the Lebesgue measure on
R2) but not a point mass.

Notice that by definition of the MVN distribution, we directly get the following
result, which tells us that linear transformations of a multivariate normal random
vector is multivariate normal.

Proposition 5.1.6 (Affine transformation of MVN). If X ∼ Np(µ,Σ),
ν ∈ Rq is non-random, and B is a non-random q × p matrix, then

ν +BX ∼ Nq(ν +Bµ, BΣBT).

Proof. Left as an exercise.

Remark 5.1.7 (Subvectors of MVN are MVN). This result tells us in
particular that subvectors of a MVN random vector are MVN, with mean
and covariance given by the corresponding sub-vectors and submatrices.

Example 5.1.8. Let X = (X1, X2)T, where X1 measures the average score that
students obtain the first year of college and X2 that in the second year. Suppose
that X ∼ N2(µ,Σ) with µ = (8.0, 8.2)T and

Σ =

(
1 0.8

0.8 1

)
.

Consider Y1 = (X1 +X2)/2, Y2 = X2 −X1. Clearly, Y = CX where

C =

(
1
2

1
2

−1 1

)
.

By Proposition 5.1.6, the distribution of Y = (Y1, Y2)T is a bivariate Normal, with

µy = Cµ =

(
1
2
(8.0 + 8.2)
8.2− 8.0

)
=

(
8.1
0.2

)
,

Σy =

(
1
2

1
2

−1 1

)
Σ

(
1
2
−1

1
2

1

)
=

(
0.9 0
0 0.4

)
.

94

Proposition 5.1.6 also tells us that Y1 ∼ N(8.1, 0.9) and Y2 ∼ N(0.2, 0.4), i.e. the
marginal distributions of Y1 and Y2 are univariate Normal.

So far, X ∼ Np(µ,Σ) means that X is an affine transformation of some l-
dimensional standard normal random vector. The following lemma tells us that we
can choose anyA in the definition of MVN, provided thatAAT = Σ.

Lemma 5.1.9 (MVN technical lemma). Assume X ∼ Np(µ,Σ). Then

for any p × q matrix B satisfying Σ = BBT, X = µ + BZ̃, for some
Z̃ ∼ Nq(0, I).

Proof. Non-examinable.

Using this Lemma, we can show that if two random vectors are jointly MVN, they
are independent if and only if they are uncorrelated.

Proposition 5.1.10 (MVN and independence). Let (XT,YT)T ∼ Np+q(µ,Σ),
where X ∈ Rp,Y ∈ Rq, µT = (µT

x ,µ
T
y), and

Σ =

(
Σx Σxy

ΣT
xy Σy

)
.

Then X and Y are independent if and only if Σxy = 0.

Proof. See video.

We now turn to an example where Σ is of rank 1.

Example 5.1.11. Let X ∈ Np(0,Σ), where Σ is of rank 1. Then Σ = λeeT, for

some e ∈ Rp with |e| = 1. Taking A =
√
λe , we have AAT = Σ and therefore, using

Lemma 5.1.9, X =
√
λeZ1, for some Z ∼ N(0, 1). Therefore X is like a N(0, λ)

random variable, but on the line {se : s ∈ R}, and X has a singular distribution.

We can expand this previous example into the following key result, which is
known as the Karhunen–Loève expansion.

Theorem 5.1.12 (Karhunen–Loève Expansion for MVN).
Let X ∼ Np(µ,Σ), and let Σ =

∑q
i=1 λieie

T
i be the spectral decompo-

sition of Σ, where q is the rank of Σ. Then

X = µ +
√
λ1Z1e1 +

√
λ2Z2e2 + · · ·+

√
λqZqeq,

where Z1, . . . , Zq
iid∼ N(0, 1). In particular, X takes values on the affine

subspace of dimension q defined by

{µ + s1e1 + s2e2 + · · ·+ sqeq|s1, . . . , sq ∈ R} ,

95

where e1, . . . , eq are all the eigenvectors of Σ with non-zero eigenvalues. In
other words, X takes values only in µ+V , where V is the subspace spanned
by the eigenvectors of Σ with non-zero eigenvalues. In particular, if q < p,
then X is singular, and has no density in Rp.

Proof. Left as an exercise (use the spectral decomposition of Σ).

So now we know that not all MVN variables X have a density. However, if X
has a density, then it is given by the following result.

Proposition 5.1.13 (Density of MVN). Let X ∼ Np(µ,Σ). Then X
has a density if Σ is positive definite (or equivalently if Σ has rank p, or
equivalently if Σ is invertible). In this case, its density is given by

f(x) =
1

(2π)
p
2 det(Σ)

1
2

exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
(5.1.1)

Proof. If Σ is has rank p, then Σ = AAT for some invertible p × p matrix A, and
X = µ + AZ, where Z ∼ Np(0, I). By independence, the density of Z is given by

fZ(z1, . . . , zp) =

p∏
i=1

(
(2π)−1/2 exp(−1

2
z2
i)

)
= (2π)−p/2 exp(−zTz/2),

Now defining the transformation φ : Rp → Rp by φ(z) = µ +Az, we have φ−1(x) =
A−1(x− µ),

Jφ−1 = det

(
dφ−1

dx
(x)

)
= det

(
A−1

)
= det (Σ)−1/2 ,

since det(Σ) = det(AAT) = det(A)2. Using the formula for the change of variables,
we get

fX(x) = fZ(φ−1(x)) |Jφ−1| = (2π)−p/2 det(Σ)−1/2 exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
,

since

(φ−1(x))T(φ−1(x)) = (A−1(x− µ)T(A−1(x− µ))

= (x− µ)T(A−1)TA−1(x− µ)

= (x− µ)TΣ−1(x− µ).

Notice that Σ−1 appears in the density function, and it therefore makes sense
that Σ needs to be invertible for a density to exist, and this is equivalent to assuming
Σ is of full rank, or equivalently positive definite.

96

Example 5.1.14. The univariate Normal distribution is the case p = 1. To see this,
set p = 1 in (5.1.1) and obtain

f(x1) =
1√

2πσ11

exp

{
−1

2

(x1 − µ1)2

σ11

}
,

which is the density function for a univariate Normal variable. Notice here that
σ11 = Var(X1).

Example 5.1.15. Let us write down the density for the bivariate (p = 2) Normal
distribution in an expanded form. The covariance is

Σ =

(
σ11 σ12

σ12 σ22

)
and hence det(Σ) = σ11σ22−σ2

12 = σ11σ22(1−ρ2
12), where ρ12 is the correlation. The

inverse of the covariance is

Σ−1 =
1

σ11σ22(1− ρ2
12)

(
σ22 −σ12

−σ12 σ11

)
,

and hence

(x− µ)TΣ−1(x− µ) =

=
σ22(x1 − µ1)2 + σ11(x2 − µ2)2 − 2σ12(x1 − µ1)(x2 − µ2)

σ11σ22(1− ρ2
12)

=
1

1− ρ2
12

(
(x1 − µ1)2

σ11

+
(x2 − µ2)2

σ22

− 2ρ12
x1 − µ1√

σ11

x2 − µ2√
σ22

)
=

1

1− ρ2
12

(
z2

1 + z2
2 − 2ρ12z1z2

)
,

where zi = (xi − µi)/
√
σii is the z-score for xi. The density is

f(x) =
1

2π
√
σ11σ22(1− ρ2

12)
exp

{
− 1

2(1− ρ2
12)

(
z2

1 + z2
2 − 2ρ12z1z2

)}
.

Notice that if Σ = (σij) is the covariance matrix of X, then the variances of the
coordinates of X are σii, and not σ2

ii. This is different to the usual notation that
you are used to for the univariate normal distribution.

Looking back at Proposition 5.1.13, we notice that the density of a MVN depends
on x only through

(x− µ)TΣ−1(x− µ). (5.1.2)

The quantity (5.1.2) is the square of the so-called Mahalanobis distance between
x and µ, defined as

√
(x− µ)TΣ−1(x− µ). We shall now see that the Mahalanobis

distance is intimately related to ellipses/ellipsoids in Rp. We start by recalling the
definition of an ellipsoid.

97

Definition 5.1.16 (Ellipsoid). An ellipsoid with center m ∈ Rp and axes
along the coordinate axes is the set of all points z ∈ Rp such that

p∑
i=1

ai(zi −mi)
2 = 1

for some a1, . . . , ap ∈ R+. Further, the length of the ith axis of the ellipsoid

is a
− 1

2
i .

Proposition 5.1.17 (Contours of MVN density). The contours of con-
stant density (x−µ)TΣ−1(x−µ) = c for a Np(µ,Σ) distribution define an
ellipsoid centered at µ whose axes are given by e1, . . . , ep, the eigenvectors
of Σ. Further, the length of axis i of the ellipsoid is given by

√
cλi, where

λ1, . . . , λp are the eigenvalues of Σ.

This result gives a natural interpretation of Principal Component Analysis when
the data follow a multivariate Normal. The Principal Components are obtained by
projecting X on the ellipsoid axes.

Proof. We start by noting that the eigenvectors of Σ−1 are the same as those of
Σ, and its eigenvalues are the inverse λ−1

1 , . . . , λ−1
p . Therefore, using the eigen-

decomposition of Σ−1 we can write

(x− µ)TΣ−1(x− µ) = (x− µ)T

(
p∑
i=1

1

λi
eie

T
i

)
(x− µ) =

p∑
i=1

1

λi
(x− µ)Teie

T
i (x− µ) =

p∑
i=1

1

λi
(zi −mi)

2, (5.1.3)

where zi = xTei and mi = µTei are the projections on ei, which therefore define the
axes of the ellipsoid. Setting (5.1.3) equal to c gives

p∑
i=1

1

cλi
(zi −mi)

2 = 1,

which is an ellipsoid with axis lengths
√
cλi.

library(mvtnorm)

library(magrittr)

xseq <- seq(-4,4,length=100)

xgrid <- expand.grid(xseq,xseq)

mu <- c(0,0); S <- matrix(c(2,1,1,1),nrow=2)

y <- dmvnorm(xgrid, mean=mu, sigma=S)

98

zlim <- range(y);

e <- eigen(S)$vectors

par(mfrow=c(2,1), mar=c(0,0,0,0))

zlim[1] <- -.1

ctrs <- contourLines(x= xseq, y=xseq,

z=matrix(y,nrow=length(xseq),ncol=length(xseq)),

nlevels=10)

ctrs[[1]] %>% str

List of 3

$ level: num 0.02

$ x : num [1:245] -2.87 -2.88 -2.88 -2.87 -2.87 ...

$ y : num [1:245] -1.56 -1.49 -1.41 -1.33 -1.31 ...

V <- persp(x=xseq, y=xseq, z=matrix(y,nrow=length(xseq),

ncol=length(xseq)), xlab='X1', ylab='X2',

zlab='Density', theta=10, phi=30, border=NA,

col=grey(.9), box=TRUE , shade=.75, zlim=zlim)

for(i in 1:length(ctrs)) ## plot the contours

lines(trans3d(x=ctrs[[i]]$x, y=ctrs[[i]]$y, z=zlim[1], V), col=1)

points(trans3d(x=mu[1], y=mu[2], z=zlim[1], V), col=1, pch=20)

lines(trans3d(x=c(-10,10)*e[1,1], y=c(-10,10)*e[2,1], z=zlim[1], V),

col=2)

lines(trans3d(x=c(-10,10)*e[1,2], y=c(-10,10)*e[2,2], z=zlim[1], V),

col=4, lty=2)

par(mai=c(.8,.8,.8,.8))

contour(x=xseq, y=xseq, z=matrix(y,nrow=length(xseq),ncol=length(xseq)),

xlab='X1', ylab='X2', asp=1, xlim=3*c(-1,1), ylim=3*c(-1,1))

points(mu[1],mu[2],pch=20,cex=1)

#

segments(x0=-100*e[1,1],y0=-100*e[2,1], x1=100*e[1,1],y1=100*e[2,1],

col=2)

segments(x0=-100*e[1,2],y0=-100*e[2,2], x1=100*e[1,2],y1=100*e[2,2],

col=4, lty=2)

Example 5.1.18. Consider a bivariate Normal distribution with µ = (0, 0)T and

Σ =

(
2 1
1 1

)
. A plot of the density and its contours are given in Figure 38.

We observe that the contours are elliptical. The eigenvectors of Σ are e1 =
(0.851, 0.526)T and e2 = (0.526,−0, 851)T, with corresponding eigenvalues λ1 = 2.62
and λ2 = 0.38. The lower panel in Figure 38 shows the axis defined by e1 as a solid
line and that for e2 as a dashed line. The length of the first and second axes are√

2.62 = 1.62 and
√

0.38 = 0.62, respectively. This matches our visual impression
that the main axis is 2-3 longer than the secondary axis.

99

X1

X
2

D
ensity

●

X1

X
2

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

−4 −2 0 2 4

−
3

−
2

−
1

0
1

2
3

●

Figure 38: Bivariate Normal with µ = (0, 0), σ11 = 2, σ22 = 1, σ12 = 1. Top:
density function, with contours; Bottom: density contours. In both plots, the first
eigenvector is in red, and the second eigenvector is in dashed blue.

100

So far we have seen that the multivariate Normal has the nice properties that its
margins are again multivariate Normal and that it is closed with respect to linear
combinations. Another interesting property is that the conditional distributions are
also multivariate Normal.

Proposition 5.1.19 (Conditional distributions of MVN).
Let XT = (XT

1 ,X
T
2) ∼ Np(µ,Σ) with µT = (µT

1 ,µ
T
2) and

Σ =

(
Σ11 Σ12

ΣT
12 Σ22

)
,

where X1 is q×1, X2 is (p− q)×1, Σ11 is q× q and Σ22 is (p− q)× (p− q).
Further, Σ22 is assumed to be of full rank.

Then the conditional distribution of X1 given X2 is

X1 | X2 ∼ Nq(µ1 + Σ12Σ−1
22 (X2 − µ2),Σ11 − Σ12Σ−1

22 ΣT
12).

Notice in particular that this result implies that AX|BX is multivariate normal
if BX has a density.

Proof. Left as an exercise. Hint: use Proposition 5.1.10 to show that

X1 − Σ12Σ−1
22 (X2 − µ2) and X2

are independent.

Example 5.1.20. Let X = (X1, X2)T follow a bivariate Normal with mean µ =
(µ1, µ2)T and covariance

Σ =

(
σ11 σ12

σ12 σ22

)
.

Following Proposition 5.1.19, the distribution of X1 given X2 is a univariate
Normal with variance

Var(X1 | X2) = σ11 −
σ2

12

σ22

= σ11(1− ρ2
12)

and mean
E(X1 | X2) = µ1 +

σ12

σ22

(X2 − µ2).

As one would expect, Var(X1 | X2) = σ11 = Var(X1) when ρ12 = 0 and Var(X1 |
X2) → 0 when ρ → ±1. Also, if Cov(X1, X2) = σ12 > 0 we see that E(X1 | X2)
grows as (X2−µ2) increases. When σ12 < 0 then E(X1 | X2) decreases as (X2−µ2)
increases.

Based on all we have seen so far it is straightforward to see that one can trans-
form X into a set of independent variables, and that squared Mahalanobis distance
between X and µ follows a chi-square distribution with p degrees of freedom. The
latter result can be useful to identify outliers, as it tells us the region that should con-
tain observations from X with probability 1− α. Before stating the next result, let

101

us recall the definition of a chi-square random variable: Z ∼ χ2
p if Z = Y 2

1 + · · ·+Y 2
p

for some Y1, . . . , Yp
iid∼ N(0, 1). That is, the χ2

p distribution is the distribution of the
squared norm of a Np(0, I) random vector.

Proposition 5.1.21 (Transformation to independent variables).
Let X ∼ Np(µ,Σ). If Σ has full rank, then

Y = Σ−1/2(X− µ) ∼ Np(0, Ip).

Furthermore,
D(X) , (X− µ)TΣ−1(X− µ) ∼ χ2

p,

a chi-square distribution with p degrees of freedom. Thus

P
(
(X− µ)TΣ−1(X− µ) ≤ χ2

p(1− α)
)

= 1− α,

where χ2
p(1− α) is the 1-α quantile of a χ2

p distribution.

Proof. Left as an exercise.

Example 5.1.22. Consider the bivariate Normal from Example 5.1.18, with µ =
(0, 0)T and

Σ =

(
2 1
1 1

)
.

We can use the R package mvtnorm to obtain 200 draws from this distribution.
The Mahalanobis distance between each draw and µ follows a χ2

2 distribution, which
has 95% percentile equal to 5.99. Therefore, the ellipse (X−µ)TΣ−1(X−µ) = 5.99
should contain roughly 95% of the observations. The upper panel in Figure 39 shows
the observed values and the ellipse (drawn with R package ellipse, see below). We
see that indeed most of the observations lie within the ellipse (97%, to be exact).

We then compute squared Mahalanobis distances (R function mahalanobis) and
display a histogram in the lower panel of Figure 39. We see that the histogram closely
resembles the the theoretical χ2

2 distribution (gray line), and that most distances are
smaller than the 95% cutoff at 5.99. To be precise, 97% of the distances are below
5.99, as we just saw. The R code required to produce these plots is provided below.

library(mvtnorm)

library(ellipse)

#Obtain draws

mu <- c(0,0); S <- matrix(c(2,1,1,1),nrow=2)

set.seed(1) # for reproducibility

x <- rmvnorm(n=200, mean=mu, sigma=S)

Find 95\% quantile

102

(c <- qchisq(0.95, df=2))

[1] 5.991465

#Compute squared Mahalanobis dist.

d <- mahalanobis(x, center=mu, cov=S)

mean(d>c)

[1] 0.03

#Plot 1

par(mfrow=c(2,1))

plot(x,xlab='X1',ylab='X2')

lines(ellipse(S, centre=mu, level=0.95))

#Plot 2

hist(d,xlab='squared Mahalanobis distance',main='',cex.lab=1.5)

abline(v=c,lwd=2,lty=2)

dseq <- seq(0,1.5*max(d),length=1000)

lines(dseq, 200*dchisq(dseq, df=2), col='gray', lwd=2)

legend('topright',c('Observed freq.','Chi-square df=2'),

lty=1, lwd=2, col=c('black','gray'), cex=1.3)

par(op)

5.1.2 Wishart distribution

So far we described probability distributions for random vectors. We now turn to
an important family of distributions for random matrices (matrices whose entries
are random variables). The following distribution on random matrices is motivated
by the fact that the sample covariance matrix if of the form n−1

∑n
i=1 XiX

T
i , if

EXi = 0.

Definition 5.1.23 (Wishart Distribution).

Suppose X1, . . . ,Xn
iid∼ Np(0,Σ). Then the random p× p matrix

S =
n∑
i=1

XiX
T
i

follows a p-dimensional Wishart distribution with n degrees of freedom and
scale matrix Σ. Since S depends on p,Σ, n, we write

S ∼ Wp(Σ, n).

If Σ is of full rank (and hence invertible), and n ≥ p, then the density

103

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

● ●

●
●

●●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2

X1

X
2

squared Mahalanobis distance

F
re

qu
en

cy

0 2 4 6 8 10 12

0
20

40
60

80 Observed freq.
Chi−square df=2

Figure 39: 200 bivariate Normal draws with mean (0, 0)T, σ11 = 2, σ12 = σ22 = 1.
Top: observed draws and 95% probability ellipse; Bottom: histogram with squared
Mahalanobis distances (black), theoretical χ2

2 distribution (grey) and 95% theoretical
quantile (black dashed line).

104

of a Wp(Σ, n) random matrix is given by

f(S) =
1

2
np
2 det(Σ)

n
2 Γp(

n
2
)

det(S)
n−p−1

2 exp

{
−1

2
Tr
(
Σ−1S

)}
, (5.1.4)

for S SPD, where Γp(·) is the multivariate gamma function. The density
is zero for all S that are not SPD.

You do not need to remember the formula for the density.
We note that the construction ensures that S is symmetric (as each term is

symmetric) and positive semi-definite. To see the latter let z ∈ Rp be an arbitrary
non-zero vector, then

zTSz = zT

(
n∑
i=1

XiX
T
i

)
z =

n∑
i=1

(zTXi)(X
T
i z) =

n∑
i=1

(zTXi)
2 ≥ 0.

Let us see that if Σ is invertible and n ≥ p, then S is strictly positive-definite.
Note that S = XTX where X is an n × p matrix where the ith row is equal to
XT
i . Thus S has full rank if and only if at least p vectors amongst X1, . . . ,Xn are

linearly independent, which given that n ≥ p happens with probability 1 under any
continuous probability distribution with a density, and in particular the MVN with
invertible Σ. Hence S−1 exists which implies that none of its eigenvalues can be 0
and thus it is strictly positive definite. As a remark, note that if one were to consider
the case n < p then X has rank n and thus S would not be of full rank.

We note that if S−1 exists, then it is also positive definite and symmetric, hence
this can be another interesting way to define random matrices (in fact, it gives rise
to the inverse Wishart distribution, which we will not discuss here).

Proposition 5.1.24 (Properties of the Wishart Distribution).

1. The mean is E(S) = nΣ.

2. The variance of element (i, j) is Var(sij) = n(σ2
ij+σiiσjj) for n ≥ p+1.

3. Additivity of degrees of freedom. If S1 ∼ Wp(Σ, n) and S2 ∼ Wp(Σ,m)
are independent, then S1 + S2 ∼ Wp(Σ, n+m).

4. If S ∼ Wp(Σ, n) and C is a q×p matrix, then CSCT ∼ Wq(CΣCT, n).

5. If v ∈ Rp, then
vTSv ∼ (vTΣv)χ2

n.

The result implies in particular that W1(α, n)
d
= αχ2

n, and that

(S)ii/σii ∼ χ2
n

for i = 1, . . . , p.

Proof. Part 1. follows from direct calculations (do it!).

105

Part 2. will not be shown, and is not examinable.
Part 3. follows immediately by noting that S1 + S2 =

∑n
i=1 xixi +

∑m
j=1 yjy

T
j

with independence across i, j, which is precisely the definition of a Wishartn+m(Σ).
For part 4. we note that by definition

CSCT =
n∑
i=1

Cxix
T
i C

T =
n∑
i=1

ziz
T
i ,

where zi = Cxi ∼ Nq(0, CΣCT) are independent. Hence again by definition
CSCT ∼ Wq(CΣCT, n).

Part 5. is left as an exercise.

5.1.3 Hotelling’s T 2 distribution

Recall that a Student t distribution with q degrees of freedom is defined as the ratio

tq
d
=
N(0, 1)√
χ2
q/q

,

where the variables in the ratio are independent, and
d
= means equal in distribu-

tion. The following distribution, called Hotelling’s T 2 distribution, is a univariate
distribution that generalizes the Student t distribution, and will be important later
on.

Definition 5.1.25 (Hotelling’s T 2 Distribution).
A random variable D follows Hotelling’s T 2 distribution with degrees

of freedom (p,m), written T 2
p,m, where m ≥ p, if and only if

D = XT

(
S

m

)−1

X,

for some X ∼ Np(0,Σ), S ∼ Wp(Σ,m), where Σ is invertible, and X, S are
independent.

As an exercise, show that the T 2
p,m distribution does not depend on the choice of Σ.

If we take p = 1, Hotelling’s T 2 distribution is equal to the square of a student tm
distribution. What if p > 1? Well, then it is linked to the F distribution, which we
now recall:

Definition 5.1.26 (F distribution).
Let p, q ∈ {1, 2, . . .}. A random variable W ∈ R is said to follow a Fp,q

distribution, also called F distribution with (p, q) degrees of freedom, if

W =
U/p

V/q
,

for some independent U ∼ χ2
p, V ∼ χ2

q.

106

Notice in particular that (tq)
2 d

= F1,q, therefore the F distribution generalizes stu-
dent’s t distribution. It turns out that a re-scaled version of a Hotelling’s T 2 follows
an F distribution. Specifically, we have the following result.

Proposition 5.1.27 (Link between Hotelling’s and the F distribu-
tion).

If D ∼ T 2
p,m, then

m− p+ 1

mp
D ∼ Fp,m−p+1.

Hence, we can easily evaluate the density and tail probabilities using those from the
F distribution. The proof of this Proposition is beyond the scope of this module.

5.2 Parameter estimation

We now discuss how to obtain maximum likelihood estimates for the mean and
covariance of a multivariate Normal distribution, and their associated confidence
regions. We will only consider the case where Σ is invertible. If it is not, then
one needs to work in coordinates with respect to the eigenvectors of Σ that have
non-zero eigenvalues (and this is beyond the scope of the module).

5.2.1 Point estimates

Let x1, . . . ,xn be i.i.d. draws from a Np(µ,Σ). The likelihood function is

L(µ,Σ) =
n∏
i=1

(
1

(2π)
p
2 det(Σ)

1
2

exp

{
−1

2
(xi − µ)TΣ−1(xi − µ)

})

=
1

(2π)
np
2 det(Σ)

n
2

exp

{
−1

2

n∑
i=1

(xi − µ)TΣ−1(xi − µ)

}
(5.2.1)

The maximum likelihood estimate (MLE) is obtained by maximizing (5.2.1) with
respect to (µ,Σ). In order to find the MLE we will need the following result.

Lemma 5.2.1 (MLE technical lemma). Let B be a symmetric positive
definite (SPD) p×p matrix and b > 0. Then the maximum of the function

g(Σ) , det(Σ)−b exp

(
−1

2
Tr(Σ−1B)

)
,

defined over the space of SPD matrices, is obtained for Σ = 1
2b
B.

Proof. Proof may be on Assignment 2.

107

Proposition 5.2.2 (MLE for the mean and covariance of MVN
distribution).

Let x1, . . . ,xn be an observed random sample from Np(µ,Σ).

1. The MLE for µ is

µ̂ , x̄ ,
1

n

n∑
i=1

xi

2. The MLE for Σ is

Σ̂ ,
1

n

n∑
i=1

(xi − x̄)(xi − x̄)T

Proof. We start by maximizing (5.2.1) with respect to µ, which is equivalent to
minimizing

n∑
i=1

(xi − µ)TΣ−1(xi − µ).

The optimum could be easily found using vector derivatives, but here we shall use
a more basic approach. Using that the trace of a number is that same number and
other properties of the trace, we re-write the expression as

Tr

(
n∑
i=1

(xi − µ)TΣ−1(xi − µ)

)
=

n∑
i=1

Tr
(
(xi − µ)TΣ−1(xi − µ)

)
=

n∑
i=1

Tr
(
Σ−1(xi − µ)(xi − µ)T

)
= Tr

(
Σ−1

n∑
i=1

(xi − µ)(xi − µ)T

)

= Tr

(
Σ−1

n∑
i=1

(xi − x̄ + x̄− µ)(xi − x̄ + x̄− µ)T

)

= Tr

(
Σ−1

n∑
i=1

(
(xi − x̄) + (x̄− µ)

)(
(xi − x̄) + (x̄− µ)

)T)

= Tr

(
Σ−1

n∑
i=1

(xi − x̄)(xi − x̄)T + Σ−1

n∑
i=1

(x̄− µ)(x̄− µ)T
))

(5.2.2)

= Tr

(
Σ−1

n∑
i=1

(xi − x̄)(xi − x̄)T

)
+ n(x̄− µ)TΣ−1(x̄− µ). (5.2.3)

Since the first term in (5.2.3) does not depend on µ, we just need to minimize
(x̄ − µ)TΣ−1(x̄ − µ). This expression is greater than or equal tho zero given that
Σ−1 is positive definite, and is exactly equal to zero at µ = x̄. Therefore the
minimum is achieved at µ = x̄.

To find the MLE for Σ, we plug in µ = x̄ as this maximizes the likelihood for
any Σ. Taking (5.2.1) and (5.2.2) the goal is to maximize

1

det(Σ)n/2
e−

1
2

Tr(Σ−1B) = g(Σ),

108

where g(·) is defined in Lemma 5.2.1, with b = n/2 and B =
∑n

i=1(xi− x̄)(xi− x̄)T.
Lemma 5.2.1 gives that the maximum occurs at

1

2n
2

B =
1

n

n∑
i=1

(xi − x̄)(xi − x̄)T.

Similarly to the univariate Normal case, the MLE for Σ is biased and typically
one uses the unbiased version with n− 1 in the denominator, that is

S =
1

n− 1

n∑
i=1

(Xi −X)(Xi −X)T

(recall Section 4.2.4.)

5.2.2 Confidence regions

The following result gives the sampling distribution for X and S = 1
n−1

∑n
i=1(Xi −

X)(Xi −X)T for Normally distributed data.

Proposition 5.2.3 (Multivariate version of Fisher’s Theorem). Let
X1, . . . ,Xn be an i.i.d. sample from Np(µ,Σ).

1. X = 1
n

∑n
i=1 Xi is distributed Np(µ,

1
n
Σ).

2. (n− 1)S ∼ Wp(Σ, n− 1).

3. X and S are independent.

Proof. Here is a sketch, the details of which you should complete on your own..
Since the Xis are i.i.d. MVN, they are jointly MVN, and therefore the sample
mean (being a linear transformation of a multivariate normal) is MVN. One di-
rectly computes the expectation of X. For its covariance, we use the formula
Cov(Y) = E

[
Y(Y − EY)T

]
, proved in the assignment, and use the linearity of

the expectation.
2. See video.
3. See video

Example 5.2.4. Let X = (X1, X2, X3)T ∼ Np(µ,Σ) with µ = (10, 5, 0)T and

Σ =

2 1 1
1 2 1
1 1 2

 .

Define Y1 = X1 −X2 and Y2 = X3 and suppose we get a sample of size n = 20
from X. What is the sampling distribution of Ȳ?

109

We first note that Y = (Y1, Y2)T = CX, with

C =

(
1 −1 0
0 0 1

)
.

Therefore the distribution of Y is bivariate Normal with mean µy = Cµ = (5, 0)T

and covariance Σy = CΣCT =

(
2 0
0 2

)
. Hence, the distribution of the sample mean

based on n = 20 observations is

Ȳ ∼ N2(µy,Σy/20).

The previous result tells us the sampling distribution of the MLE (X, n−1
n
S) for

Normally distributed data.
In Proposition 5.1.21 we saw that, for X ∼ Np(µ,

1
n
Σ), the statistic

n(X− µ)TΣ−1(X− µ)

follows a χ2
p distribution. Hence, if Σ were known we could use this result to obtain

a 1− α confidence region for µ as follows:{
µ ∈ Rp : n(X− µ)TΣ−1(X− µ) ≤ χ2

p(1− α)
}

When Σ is unknown, we can replace it with an estimate and use the following result.

Proposition 5.2.5 (Confidence regions for µ).

Let X1, . . . ,Xn
iid∼ Np(µ,Σ), and let X = 1

n

∑n
i=1 Xi and

S =
1

n− 1

n∑
i=1

(Xi −X)(Xi −X)T.

If Σ is invertible, and n ≥ p+ 1, then

n(X− µ)TS−1(X− µ) ∼ (n− 1)p

n− p
Fp,n−p

In particular, 1− α confidence region for µ is given by the ellipsoid{
y ∈ Rp : n(X− y)TS−1(X− y) ≤ (n− 1)p

n− p
Fp,n−p(1− α)

}
,

where Fp,n−p(1− α) is the 1− α quantile of an Fp,n−p distribution.

Proof. Define T 2 =
√
n(X − µ)TS−1

√
n(X − µ), and note that this is the product

of a Np(0,Σ) times an independent (1
n−1
Wp(Σ, n − 1))−1 times the same Np(0,Σ).

By Definition 5.1.25, T 2 follows Hotelling’s distribution with degrees of freedom
(p, n− 1), which gives the result after applying Proposition 5.1.27.

110

A basic result in probability theory is that when n→∞, (n−1)p
n−p Fp,n−p converges

to a χ2
p. Intuitively this makes sense, as we know by the law of large numbers

and Slutsky’s Lemma that S
p−→ Σ as n → ∞, and thus applying the continuous

mapping theorem we get T 2 d−→ χ2
p.

Example 5.2.6. We continue Example 5.1.22, but just use 20 draws from a bivariate
normal. We compute the sample mean X = (0.3, 0.06) and sample covariance

S =

(
1.51 0.97
0.97 1

)
.

We compute 95% confidence regions for µ, both using the true Σ and its estimate
S. When Σ is known, the confidence region is given by the ellipse

{y ∈ R2 : (X− y)TΣ−1(X− y) ≤ χ2
2(0.95)/20}.

When Σ is unknown, we are looking for the ellipse

{y ∈ Rp : (X− y)TS−1(X− y) ≤ Fp,18(0.95)

20
× 19× 2

18
}

These ellipses can be easily plotted in R using the ellipse function and indicat-
ing the cutoff point with the argument t. The R code is below and Figure 40 shows
the results. On the upper panel we see the original draws and that both confidence
regions are quite similar. On the lower panel we provide a zoom-in where we can
appreciate that the 95% confidence region using S is slighly larger than that for Σ
(as it’s usually, though not always, the case). Both regions are centered at X and
contain the true value µ = (0, 0)T.

The R code below shows that the critical values for the known and unknown cases
are not quite similar (0.3 vs. 0.375), as expected since n is not large. In particular,
this means that the confidence region without knowing the true covariance is larger
to the confidence region when the true covariance is known. This difference becomes
smaller if n is larger.

op <- par(mfrow=c(1,1), mai=rep(.4,4))

plot(x,xlab='X1',ylab='X2', xlim=c(-4,4), ylim=c(-2,2))

lines(ellipse(Sest, centre=muest, t=sqrt(tf)), lwd=2)

lines(ellipse(S, centre=muest, t=sqrt(tchi)),col=2,lty=2, lwd=2)

points(muest[1],muest[2], pch=15, cex=1.5)

points(mu[1],mu[2], pch=17, cex=1.5, col=4)

#text(muest[1],muest[2],'Sample mean',pos=1,cex=1)

#text(mu[1],mu[2],'True mean',pos=1,cex=1,col='blue')

legend('topright', legend=c('True mean', 'Sample mean'),

pch=c(17, 15), col=c(4,1))

par(op)

111

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

−4 −2 0 2 4

−
2

−
1

0
1

2 True mean
Sample mean

Figure 40: Bivariate Normal data and 95% confidence region using true (dashed
red) and estimated covariance (solid black).

112

Proposition 5.2.5 tells us how to obtain confidence regions for the mean of a single
population. Often we will have data arising from several populations, in which case
we may be interested in obtaining confidence regions for each group. In general, we
can simply apply Proposition 5.2.5 to each group separately. However, when the
covariances in each group are equal (or in practice, similar enough) and the sample
size per group is limited, it may be preferrable to obtain an overall estimate for Σ
across all groups. In that case the following result applies.

Proposition 5.2.7 (Confidence regions for µ1, . . . ,µK).
Let X1, . . . ,XK be the sample means from K independent multivariate

Normal populations with means µ1, . . . ,µK , and common covariance Σ.
Let

Sp =
1

N −K

K∑
i=1

(ni − 1)Si,

where n1, . . . , nK and S1, . . . , SK are the sample sizes and sample covariance
matrices in each group (respectively) and N =

∑K
i=1 ni. Then

ni(Xi − µi)
TS−1

p (Xi − µi) ∼
(N −K)p

N −K − p+ 1
Fp,N−K−p+1

In particular, A 1− α confidence region for µi is given by the ellipse{
yi ∈ Rp : ni(Xi − yi)

TS−1
p (Xi − yi) ≤

(N −K)p

N −K − p+ 1
Fp,N−K−p+1(1− α)

}

Proof. Because of the additive property of independent Wishart distributions, the
pooled sample covariance Sp follows a Wishart with N − K degrees of freedom.
Hence the result follows immediately from the proof of Proposition 5.2.5, by simply
noting that we have the product of a Np(0,Σ) times the inverse of an independent

1
N−KWp(Σ, N −K) times the same Np(0,Σ).

5.2.3 Asymptotics of the Sample Mean

We have see that X is the MLE of the mean of a MVN random vector. However
(provided Σ is finite), X may be a sensible estimator for non-normally distributed
data as well, as it estimates the population mean consistently as n → ∞. Also,
when n → ∞ then X is approximately Normal even when the individual Xi’s are
not Normally distributed.

Proposition 5.2.8 (Law of Large Numbers and Central Limit The-
orem).

Let X1, . . . ,Xn
iid∼ X be an i.i.d. sample from a multivariate distribution.

1. If E|X| <∞, then

X
a.s.−→ µ, as n→∞,

113

where µ = EX.

2. If E|X|2 <∞, then

√
n(X− µ)

d−→ Np(0,Σ), as n→∞,

where Σ = Cov(X).

Proof. Part (1) follows from applying the univariate Strong Law of Large Numbers
for each element in X.

We do not prove Part (2) here, but the result follows from seeing that the char-
acteristic function of X converges to that of a multivariate Normal (analogously to
the proof for the univariate Central Limit Theorem).

5.3 Hypothesis testing

We now focus on testing hypotheses, that is on determining whether a given param-
eter value (or function of parameter values) is likely to have generated the observed
data. These multivariate tests generalize the usual one-sample t-test, two-sample
t-test and F-test (ANOVA) to the case where there are several response variables.

The main difference between univariate and multivariate hypothesis tests is that
the former focus on a single variable, while the latter perform an overall comparison
that takes all variables into account. As an example suppose we have two variables
X and Y , and that we want to compare their expected values between two groups.
One option is to use univariate tests (e.g. t-tests) to compare means for each variable
separately. Some limitations and advantages of this univariate approach are:

1. Unless we somehow adjust for multiple comparisons, the family-wise type-I
error rate for the test will be greater than the desired α.

2. Exactly which multiple comparisons adjustment is more adequate depends on
the dependence between X and Y .

3. When there truly are differences between groups both for X and Y , a multi-
variate analysis will in general have greater power to detect them. For instance,
the multivariate test can achieve statistical significance even when both uni-
variate tests do not.

4. Conversely, when only some variables exhibit differences between groups a
univariate approach may have higher power than a multivariate one.

5. The univariate approach may be easier to explain to non-experts.

Recall that for univariate tests there is a direct relationship between confidence
intervals and P-values. As we shall see below, the same kind of relationship holds
for multivariate tests, where P-values are directly related to confidence regions.

The methods we see below assume the data have an MVN distribution, thanks
to the Central Limit Theorem they can also be used whenever n is moderately large.

114

Remark 5.3.1 (Rejecting and Accepting Hypotheses).
It is bad practice to say “we reject the null” without saying the level at

which you reject the null. Not rejecting the null at a specific level does not
imply that “we accept the null hypothesis”. Read the paper called Retire
Statistical Significance (available on Moodle) for advice on best practice.

5.3.1 Test 1 multivariate Normal mean

Let us start by considering the 1-sample problem. Let X1, . . . ,Xn be independent
draws from a Np(µ,Σ) distribution, and suppose we are interested in testing

H0 : µ = µ0 vs. H1 : µ 6= µ0,

where µ0 is a known constant.
Given what we know from Proposition 5.2.5, a natural test statistic is

T 2 = n(X− µ0)TS−1(X− µ0),

which is called Hotelling’s T 2 test. It’s named after Harold Hotelling, who pro-
posed it as early as 1931 as a generalization of the squared Student’s t-statistic for
univariate tests

t2 = n
(X̄ − µ0)2

σ̂2
,

where σ̂2 is the sample variance.

Proposition 5.3.2 (T-squared Test). Let X1, . . . ,Xn be independent
draws from a Np(µ,Σ). Assume that Σ is invertible and that n ≥ p + 1.
Under H0 : µ = µ0,

T 2 = n(X− µ0)TS−1(X− µ0) ∼ (n− 1)p

n− p
Fp,n−p.

The result a direct consequence of Proposition 5.2.5 and the definition of Hotelling’s
T 2 distribution. Notice that any T 2 > (n−1)p

n−p Fp,n−p(1− α) (for which H0 is rejected

at level α) falls outside the confidence region given by the ellipse

{z : n(z− µ0)TS−1(z− µ0) =
(n− 1)p

n− p
Fp,n−p(1− α)}.

That is, testing H0 at level α using T 2 is equivalent to checking whether X falls
inside the 1− α confidence region.

Example 5.3.3. n = 15 university students were asked to evaluate the importance
(in a scale from 0 to 100) of 4 items for a module to be successful: teacher explaining
well (X1), teacher being enthusiastic (X2), material being useful (X3) and material
being interesting (X4).

115

Y1 Y2

0 5
10 30
10 0
0 0

40 0
20 15
−30 0
−2 −3
−10 −30

30 −35
0 −30
5 48

10 −10
10 −15
0 −20

Table 1: Importance of teacher and material for a module to be successful, evaluated
by 20 students in a scale 0–100. Y1: difference between importance of teacher
explaining well and his/her being enthusiastic. Y2: difference between importance
of material being useful and its being interesting.

A university official suspects that, on the average, students give the same rat-
ing to the two teacher-related questions, and that the same is true for the course
material-related questions. With this in mind, he computes the differences Y1 =
X1 −X2 and Y2 = X3 −X4, which are displayed in Table 1, and wishes to test the
null hypothesis

H0 : µ =

(
EY1

EY2

)
=

(
0
0

)
Let us perform this test, assuming (Y1, Y2) follow a bivariate Normal. The sample

mean and covariance are

Y =

(
6.2
−3.0

)
;S =

(
268.03 8.93
8.93 505.57

)
and inverse covariance

S−1 =

(
3.7×10−3 −6.59×10−5

−6.59×10−5 1.98×10−3

)
.

We see that there is little correlation between Y1 and Y2. The T 2 statistic is equal

to nY
T
S−1Y = 2.456, hence the P-value is given by the tail area of T 2 n−p

(n−1)p
= 1.140

under a F2,13 distribution, and is equal to 0.350.
We compare these results with two separate t-tests for Y1 and Y2. The p-values

are 0.164 and 0.613 (respectively).
Figure 41 shows the 95% confidence region for µ, which is an ellipse containing

µ0. As we saw before, the 95% confidence ellipse will contain µ0 whenever the T 2

116

P-value is above 0.05. The figure also indicates the univariate confidence intervals
(blue dashed lines) for each mean, obtained through the usual (univariate) formula

Ȳi ± tn−1(1− α

2
)

√
sii
n

for i = 1, 2, where tn−1(1 − α
2
) is the 1 − α

2
quantile of Students t distribution

with n− 1 degrees of freedom. We appreciate that the confidence intervals define a
square in space which does not achieve 95% joint coverage. In order for the square
to achieve 95% coverage, the univariate intervals should be widened to take into
account that we’re considering two variables simultaneously. We will not discuss
how this widening could be done, but the intuitive idea should be clear from the
picture. If you are interested in this, search for “multiple testing”.

x <- read.csv('~/st323/data/course_happy.csv',header=TRUE)

x <- x[c(1,2,3,8)]

x <- x[,c('Teacher_explaining','Material_useful'),] -

x[,c('Teacher_enthusiastic','Material_stimulating')]

colnames(x) <- c('ExplainVsEnthu','UsefulVsStim')

x <- head(x,n=15)

m <- matrix(colMeans(x),ncol=1)

S <- cov(x)

Sinv <- solve(S)

n <- nrow(x); p <- ncol(x)

T2 <- n * t(m) %*% Sinv %*% m

tf <- qf(.95,df1=p,df2=n-p) * (n-1)*p/(n-p)

pval <- 1 - pf(T2 * (n-p)/((n-1)*p), df1=p,df2=n-p)

pval

[,1]

[1,] 0.3496542

ttest1 <- t.test(x[,1]); ttest2 <- t.test(x[,2])

ci1 <- ttest1$conf.int; ci2 <- ttest2$conf.int

ttest1$p.value; ttest2$p.value

[1] 0.1645539

[1] 0.6134007

ci1; ci2

[1] -2.866278 15.266278

attr(,"conf.level")

[1] 0.95

[1] -15.451731 9.451731

attr(,"conf.level")

[1] 0.95

117

ci1.bonferroni <- t.test(x[,1], conf.level=0.975)$conf.int

ci2.bonferroni <- t.test(x[,2], conf.level=0.975)$conf.int

library(ellipse)

plot(ellipse(S/n, centre=m, t=sqrt(tf)), type='l',xlab='Y1',ylab='Y2')

abline(v=ci1,col='blue',lty=2)

abline(v=ci1.bonferroni,col='red',lty=4)

abline(h=ci2,col='blue',lty=2)

abline(h=ci2.bonferroni,col='red',lty=4)

points(m[1],m[2],pch=16,cex=2)

text(m[1],m[2],pos=1,'Sample mean',cex=1.3)

points(0,0,pch=17,cex=2,col='darkgray')

text(0,0,'mu0',cex=1.3,col='darkgray',pos=3)

S0 <- t(as.matrix(x)) %*% as.matrix(x) / (n-1)

l <- (det(S) / det(S0))^(n/2)

l^(2/n)

[1] 0.8507277

(1+T2/(n-1))^(-1)

[,1]

[1,] 0.8507277

Example 5.3.4. Related to the previous example, n = 63 students were asked to
evaluate the importance of clarity and enthusiasm when a teacher presents material.
Suppose we wish to test whether students at the university would rate these two
issues with an average score of 75. That is, given the sample of n = 63 students, we
want to test the null hypothesis H0 : µ = µ0 = (75, 75)T.

To do the calculations, we are told that Ȳ = (88.3, 77.0)T and

S =

(
132.8 64.9
64.9 224.8

)
.

We compute T 2 = n(Ȳ−µ0)TS−1(Ȳ−µ0) = 90.855, hence the P-value is given
by the tail area of T 2 n−p

(n−1)p
= 44.695 under a F2,61 distribution, which is equal to

1.115×10−12.
We compare these results with separate univariate t-tests. The t-test for Y1

returns a P-value of 3.61×10−13, and that for Y2 is 0.2825. That is, there is strong
evidence against µ1 = 75 but no so much against µ2 = 75.

Figure 42 shows the 95% confidence ellipse for µ (solid black) and the univariate
95% confidence intervals. The hypothesized µ0 = (75, 75)T lies far away from the

118

−5 0 5 10 15

−
20

−
15

−
10

−
5

0
5

10

Y1

Y
2 ●

Sample mean

mu0

Figure 41: 95% confidence region for module evaluation data (solid black ellipse),
and univariate 95% confidence intervals (blue dashed lines). The dash-dotted red
lines indicated univariate 95% confidence intervals that have been adjusted for
multiplicity (using Bonferroni’s correction). The sample mean and hypothesized
µ0 = (0, 0)T are also indicated.

119

ellipse, in agreement with the small P-value in the bivariate test. We note that
the shape of the ellipse reflects the positive correlation between Y1 and Y2, namely
64.9/

√
132.8× 224.8 = 0.376. With higher degrees of correlation, the shape of the

ellipse will differ even more from the rectangle given by the univariate confidence
intervals.

x <- read.csv('~/st323/data/course_happy.csv',header=TRUE)

x <- x[,1:2]

#x <- x[c(1,2,3,8)]

#x <- x[,c('Teacher_explaining','Material_useful'),] - x[,c('Teacher_enthusiastic','Material_stimulating')]

#colnames(x) <- c('ExplainVsEnthu','UsefulVsStim')

#x <- head(x,n=15)

m <- matrix(colMeans(x),ncol=1)

mu0 <- c(75,75)

S <- cov(x)

Sinv <- solve(S)

n <- nrow(x); p <- ncol(x)

T2 <- n * matrix(m-mu0,nrow=1) %*% Sinv %*% matrix(m-mu0,ncol=1)

tf <- qf(.95,df1=p,df2=n-p) * (n-1)*p/(n-p)

pval <- 1 - pf(T2 * (n-p)/((n-1)*p), df1=p,df2=n-p)

pval

[,1]

[1,] 1.11533e-12

ttest1 <- t.test(x[,1],mu=mu0[1]); ttest2 <- t.test(x[,2],mu=mu0[2])

ci1 <- ttest1$conf.int; ci2 <- ttest2$conf.int

ttest1$p.value; ttest2$p.value

[1] 3.608413e-13

[1] 0.2825241

as.numeric(ci1); as.numeric(ci2)

[1] 85.43101 91.23566

[1] 73.27197 80.82327

plot(ellipse(S/n, centre=m, t=sqrt(tf)), type='l',xlab='Y1',

ylab='Y2', xlim=c(72,92),ylim=c(72,92))

abline(v=ci1,col='blue',lty=2)

abline(h=ci2,col='blue',lty=2)

points(m[1],m[2],pch=16,cex=2)

text(m[1],m[2],pos=1,'Sample mean',cex=1.3)

points(mu0[1],mu0[2],pch=17,cex=2,col='darkgray')

120

text(mu0[1],mu0[2],'mu0',cex=1.3,col='darkgray',pos=3)

x2 <- t(t(x)-mu0)

S0 <- t(as.matrix(x2)) %*% as.matrix(x2) / (n-1)

l <- (det(S) / det(S0))^(n/2)

l^(2/n)

[1] 0.4056132

(1+T2/(n-1))^(-1)

[,1]

[1,] 0.4056132

-2*log(l)

[1] 56.84839

1-pchisq(-2*log(l),df=2)

[1] 4.524159e-13

121

75 80 85 90

75
80

85
90

Y1

Y
2

●
Sample mean

mu0

Figure 42: 95% confidence ellipse for (µ1, µ2): mean scores for importance of teacher
explaining clarity (Y1) and enthusiasm (Y2). Blue dashed lines: univariate 95%
confidence intervals. The sample mean and hypothesized µ0 = (75, 75)T are also
indicated.

122

5.3.2 Likelihood Ratio Tests

So far we have based all our hypothesis tests on the test statistic T 2, but naturally
there are other possible choices. As an alternative, one may consider a Likelihood
Ratio Test, which provides a general recipe for testing hypotheses.

Definition 5.3.5. Let X1, . . . ,Xn
iid∼ Np(µ,Σ), with n > p and Σ invert-

ible. Let (µ0, Σ̂0) be the MLE for (µ,Σ) under H0 : µ = µ0 and (X, Σ̂)
be that under H1 : µ 6= µ0. The likelihood ratio test is based on setting a
critical value for the statistic

Λ =
f(X1, . . . ,Xn | µ0, Σ̂0)

f(X1, . . . ,Xn | X, Σ̂)
.

The critical value for this test is found by analysing the asymptotic behaviour of Λ
under the null hypothesis.

Proposition 5.3.6. In the setting of Definition 5.3.5, we have Σ̂0 = 1
n

∑n
i=1(Xi−

µ0)(Xi − µ0)T and

Λ =

(
det(Σ̂)

det(Σ̂0)

)n/2

Moreover, under H0,

−2 log(Λ)
d−→ χ2

p.

Proof. Plugging X and Σ̂ into the multivariate Normal likelihood, the denominator
in Λ simplifies to

1

(2π)
np
2 det(Σ̂)

n
2

e−
1
2

Tr(Σ̂−1
∑n

i=1(Xi−X)T(Xi−X)) =
1

(2π)
np
2 det(Σ̂)

n
2

e−
1
2
np.

To evaluate the numerator in Λ we need to find Σ̂0, the MLE for Σ when µ = µ0.
The likelihood function with µ = µ0 is

1

(2π)
np
2 det(Σ)

n
2

e−
1
2

Tr(Σ−1
∑n

i=1(Xi−µ0)T(Xi−µ0)), (5.3.1)

which using Lemma 5.2.1 is maximized for Σ̂0 = 1
n

∑n
i=1(Xi−µ0)T(Xi−µ0). Plug-

ging Σ̂0 into (5.3.1) we obtain

f(X1, . . . ,Xn | µ0, Σ̂0) =
1

(2π)
np
2 det(Σ̂0)

n
2

e−
1
2
np.

Therefore Λ = (det(Σ̂)/ det(Σ̂0))n/2, which proves the first part of the result.
The proof of the asymptotic χ2

p distribution is non-examinable, but note that

the proof is based on the Normal distribution of X. Hence, by virtue of the Central
Limit Theorem, in many instances the result can be extended for non-Normally
distributed data.

123

Note that Λ is not affected by using n− 1 or n in the denominator of Σ̂ and Σ̂0,
as this constant cancels in the ratio

det(S)

det(Σ̂0)
=

1
np det

(∑n
i=1(Xi −X)(Xi −X)T

)
1
np det (

∑n
i=1(Xi − µ0)(Xi − µ0)T)

.

The reason why Λ is an appealing test statistic is that when testing two point
hypotheses H0 : µ = µ0 versus H1 : µ = µ1 it achieves the highest power amongst
all level α tests. Of course, in our context the alternative is not a point hypothesis
so the optimality property does not hold anymore, but it seems reasonable to expect
that Λ will still achieve good power. For Normally distributed data, it turns out
that Λ is equivalent to T 2. The practical consequence is that we do not need to use
the asymptotic χ2

p distribution for Λ, but simply use the exact distribution for T 2.

Proposition 5.3.7 (LRT and Hotelling’s test). Let X1, . . . ,Xn be in-
dependent draws from aNp(µ,Σ), T 2 Hotelling’s statistic (Proposition 5.3.2)
and Λ the likelihood ratio (Proposition 5.3.6). Then

Λ2/n =

(
1 +

T 2

(n− 1)

)−1

Proof. Left as an exercise.

Example 5.3.8. We continue with the module evaluation data in Example 5.3.3.
As discussed, for that data we observe T 2 = 2.456 with corresponding exact P-
value=0.349.

The MLE for the covariance under the null is

Σ̂0 =

(
309.21 −11.0
−11.0 515.21

)
.

Therefore, det(S) = 135427.9, det(Σ̂0) = 159190.6 and Λ = 0.297.

We can easily check that Λ2/n = 0.8507 =
(

1 + T 2

n−1

)−1

, as predicted by the

theory.
Alternatively, one could compute an approximate P-value from the asymptotic

χ2
2 distribution of −2 log(Λ). In our dataset −2 log(Λ) = 2.425, with a corresponding

P-value=0.297. Both P-values are similar, and provide essentially the same conclu-
sions.

Example 5.3.9. We continue Example 5.3.4 with n = 63 students, now using a
likelihood ratio test for H0 : µ = (75, 75)′. In order to carry out the calculations,
we’re told that the MLE for Σ under H0 is

Σ̂0 =

(
313.5 92.7
92.7 229.0

)
.

124

Therefore, det(Σ̂0) = 63199.36 and det(S) = 25634.49, so that

Λ =

(
det(S)

det(Σ̂0)

)n/2

= 4.52×10−13.

To determine the (asymptotic) P-value we compute −2 log(Λ) = 56.848 and ob-
tain P (χ2

2 ≥ 56.848) = 4.524×10−13. Recall that with the T 2 statistic we found
1.115×10−12, which in practice amounts to the same overwhelming evidence against
H0.

5.3.3 Compare 2 multivariate Normal means

The methods for testing a single mean vector extend naturally to comparing mean
vectors between two populations when the covariances in the two populations are
equal. Otherwise, we must rely on asymptotic distributions. The following result
summarizes the two cases.

Proposition 5.3.10 (2-sample Hotelling’s test). Let X1, . . . ,Xn1 be
an i.i.d. sample from Np(µ1,Σ1) and Y1, . . . ,Yn2 an i.i.d. sample from
Np(µ2,Σ2), and assume that the Xis and Yjs are independent. Denote by
X,Y the sample means and S1, S2 the sample covariance matrices (n1 − 1
and n2 − 1 in the denominator).

1. Suppose that Σ1 = Σ2 and let Sp = (n1−1)S1+(n2−1)S2

n1+n2−2
. Then under

H0 : µ1 = µ2 the test statistic

T 2 = (X−Y)T
[(

1

n1

+
1

n2

)
Sp

]−1

(X−Y)

follows the distribution

(n1 + n2 − 2)p

(n1 + n2 − p− 1)
Fp,n1+n2−p−1.

2. Suppose that Σ1 6= Σ2. If n1, n2 →∞ such that n1/(n1 + n2)→ c ∈
(0, 1), then under H0 : µ1 = µ2, we have

T 2 = (X−Y)T
(
S1

n1

+
S2

n2

)−1

(X−Y)
d−→ χ2

p

as n1, n2 →∞.

Proof. To prove the first part, we start by noting that(
X
Y

)
∼ Np

((
µ1

µ2

)
,

(
Σ1/n1 0

0 Σ2/n2

))
,

125

because of independence between X1, . . . ,Xn1 and Y1, . . . ,Yn2 . Now define the
matrix

C =

1 0 . . . 0 −1 0 . . . 0
0 1 . . . 0 0 −1 . . . 0

. . .
0 0 . . . 1 0 0 . . . −1

 =
(
Ip| − Ip

)
,

where Ip is the p× p identity matrix. Then clearly C(X,Y)T = X−Y and there-
fore by Proposition 5.1.6 we have that X − Y is multivariate Normal with mean
C(µ1,µ2)T = µ1 − µ2 and covariance

C

(1
n1

Σ1 0

0 1
n2

Σ2

)
CT =

(
1
n1

Σ1|−1
n2

Σ2

)
CT =

1

n1

Σ1 +
1

n2

Σ2.

Therefore when Σ1 = Σ2 and µ1 = µ2 we get

X−Y ∼ Np

(
0,

(
1

n1

+
1

n2

)
Σ

)
.

We also note that (n1 − 1)S1 + S2(n2 − 1) follows a Wp(Σ, n1 + n2 − 2) distribu-
tion, since its summands are independent and Wp(Σ, ni − 1) distributed (Proposi-
tion 5.1.24). Therefore Sp = ((n1− 1)S1 +S2(n2− 1))/(n1 +n2− 2) is a Wp(Σ, n1 +
n2 − 2) divided by its degrees of freedom, so that

T 2 =

(
1

n1

+
1

n2

)−1/2

(X−Y)T(Sp)
−1

(
1

n1

+
1

n2

)−1/2

(X−Y)

= Np(0,Σ)T
(
Wp(Σ, n1 + n2 − 2)

n1 + n2 − 2

)−1

Np(0,Σ).

Since Sp is independent of X−Y, by definition of Hotelling’s T 2 distribution,

T 2 ∼ (n1 + n2 − 2)p

n1 + n2 − p− 1
Fp,n1+n2−1−p.

We sketch the proof of the second part (non-examinable). Let n = n1 +n2. First,
show that

√
n(X− µ1)

d−→ Np(0,Σ1/c),
√
n(Y − µ2)

d−→ Np(0,Σ2/(1− c)),

and since the Xs and Ys are independent, by the continuous mapping theorem we
get √

n(X−Y)
d−→ Np(0,Σ1/c+ Σ2/(1− c)).

Next, show that
n (S1/n1 + S2/n2)

p−→ Σ1/c+ Σ2/(1− c).
This can be done using Slutsky’s Lemma. The continuous mapping theorem there-
fore implies that

(X−Y)T (S1/n1 + S2/n2)−1 (X−Y) =
√
n(X−Y)T (n[S1/n1 + S2/n2])−1√n(X−Y)

d−→ ZT(Σ1/c+ Σ2/(1− c))−1Z

d
= χ2

p,

where Z ∼ Np(0,Σ1/c+ Σ2/(1− c)).

126

In practice it is hard to determine whether Σ1 and Σ2 are similar enough to use
part (1) of Proposition 5.3.10. There are available tests for the equality between
covariance matrices, but these usually depend critically on the assumption of mul-
tivariate Normality. An alternative is to use permutation-based approaches, but
we shall not pursue this here. For our purposes, we will assume Σ1 = Σ2 unless
there is overwhelming evidence to the contrary, and the assumption usually delivers
reasonable results in practice. In R the two-sample Hotelling test is available, for
instance, in function hotelling.test of package Hotelling.

Example 5.3.11. We revisit the example with importance scores assigned by stu-
dents in order to be happy with a course. Let X1 be the importance assigned to the
teacher explaining well, X2 to the teacher being enthusiastic and X3 of having good
lecture notes. We wish to compare the mean scores between two groups of students
(3rd year versus MSc), based on samples of n1 = 34 and n2 = 21 students, assuming
that scores are multivariate Normal distributed.

The sample mean vector in group 1 is X1 = (86.38, 77.18, 80.5)T and in group
2 it is X2 = (90.62, 76.67, 88.57)T. The sample covariances within each group and
pooled are

S1 =

151.2 93.9 157.7
93.9 259.5 86.8
157.7 86.8 731.5

 ,

S2 =

114.5 30.4 9.4
30.4 203.3 62.5
9.4 62.5 152.9

 ,

Sp =

137.4 69.9 101.7
69.9 238.3 77.6
101.7 77.6 513.2

 .

Assuming Σ1 = Σ2, we get the test statistic

T 2 =

(
1

n1

+
1

n2

)−1

(X1 −X2)TS−1
p (X1 −X2) = 2.983,

so that T 2(n1 + n2 − p − 1)/(p(n1 + n2 − 2)) = 0.9567. Under the null hypothesis
this statistic follows a Fp,n1+n2−p−1 = F3,51 distribution, so the P-value is equal to
the tail area under this distribution, namely 0.4203.

If we do not assume Σ1 = Σ2, then we compute a different test statistic

T 2 = (X1 −X2)T (S1/n1 + S2/n2)−1 (X1 −X2) = 3.764

which under the null hypothesis asymptotically follows a χ2
p = χ2

3 distribution. The
P-value is the tail area under this distribution, namely 0.2881.

In this example, the p-value of null hypothesis that the two mean vectors are
equal across 3rd year and MSc students is quite large, no matter whether we assume
Σ1 = Σ2 or not.

127

We remark that here we focused on computing test statistics and P-values, but
we could equivalently have constructed a 1 − α confidence region for µ1 − µ2 and
checked whether it contains the point 0.

5.3.4 Compare K multivariate Normal means

We now consider comparing means across more than two groups, that is test the
null hypothesis of constant mean vectors

H0 : µ1 = µ2 = . . . = µK

where K is the number of groups. This analysis is called Multivariate Analysis
of Variance (MANOVA), and generalizes the univariate ANOVA as well as the
Hotelling T-tests to compare means across more than 2 groups.

The MANOVA analysis is based on the following model for observation i =
1, . . . , nk in group k = 1, . . . , K,

Xki = µ + δk + eki,

where eki ∼ Np(0,Σ) with independence across k and i, and where µ = µ1 and
δ1 = 0. Notice that the residuals can be correlated, but the covariance Σ is assumed
to be constant across all groups. The null hypothesis that all group means are equal
can be re-stated as

H0 : δ2 = . . . = δK = 0.

Similarly to a univariate ANOVA, we define within-groups and between-groups
matrices (in the univariate case we have scalars rather than matrices). Let Xk and

Sk be the mean and sample covariance in group k, and X the grand average across
all groups. Then define

W =
K∑
k=1

nk∑
i=1

(Xki −Xk)(Xki −Xk)
T =

K∑
k=1

(nk − 1)Sk,

B =
K∑
k=1

nk(Xk −X)(Xk −X)T,

where W is the within-groups sum of squares and cross-products matrix, and B is
its between groups counterpart.

There are several possible tests based on the matrices W and B, which become
essentially equivalent as the sample size in each group grows. The most popular of
these is probably Wilks’ lambda test.

Proposition 5.3.12 (not examinable).
Assume that the MANOVA model holds and define Wilks’ statistic

Λ∗ = det(W)
det(W+B)

. When H0 : δ2 = · · · = δK = 0 holds and nk is large for all
k = 1, . . . , K, the test statistic

−
(
n− 1− p+K

2

)
log(Λ∗) ∼ χ2

p(K−1)

128

approximately, where n =
∑K

k=1 nk.

We skip the proof, as its quite convoluted, but note that the asymptotic distri-
bution was proven by Bartlett. In some particular cases an exact distribution for
Λ∗ is available, for instance when p = 1 and also when K = 2 or K = 3. These
particular cases can be found in Johnson & Wichern’s book. Furthermore, it can be

shown that W + B =
∑

k

∑
i(Xki −X)(Xki −X)T. In R several versions of Wilks’

lambda test are available in package rrcov, function Wilks.test.

Example 5.3.13 (non-examinable). Consider Anderson’s Iris flower dataset, which
records four variables for 150 plants. There are n1 = 50 plants from the species
setosa, n2 = 50 from versicolor and n3 = 50 from virginica. We wish to compare the
vector with four means across the 3 groups, considering the null hypothesis

H0 :

µ11

µ12

µ13

µ14

 =

µ21

µ22

µ23

µ24

 =

µ31

µ32

µ33

µ34

 .

The within and between groups sum-of-squares and cross-products matrices are

W =

38.96 13.63 24.62 5.65
13.63 16.96 8.12 4.81
24.62 8.12 27.22 6.27
5.65 4.81 6.27 6.16

 , (5.3.2)

B =

63.21 −19.95 165.25 71.28
−19.95 11.34 −57.24 −22.93
165.25 −57.24 437.10 186.77
71.28 −22.93 186.77 80.41

 ,

with determinants det(W) = 22096.88 and det(W + B) = 942754.6. We see
that the determinant of the within-groups matrix is much smaller than that of the
between-groups matrix, which suggests that there are differences between groups.

We compute the test statistic −
(
n− 1− p+K

2

)
log(Λ∗) = 546.1, which under a

χ2
ν with ν = p(K − 1) = 8 degrees of freedom has a p-value essentially equal to 0

(up to numerical precision).
The R code required for the calculations is below. First the code to do step-by-

step calculations is provided, and then the result is checked against that of function
Wilks.test.

data(iris)

m1 <- colMeans(iris[iris$Species=='setosa',1:4])

m2 <- colMeans(iris[iris$Species=='versicolor',1:4])

m3 <- colMeans(iris[iris$Species=='virginica',1:4])

S1 <- cov(iris[iris$Species=='setosa',1:4])

S2 <- cov(iris[iris$Species=='versicolor',1:4])

S3 <- cov(iris[iris$Species=='virginica',1:4])

129

n1 <- sum(iris$Species=='setosa')

n2 <- sum(iris$Species=='versicolor')

n3 <- sum(iris$Species=='virginica')

n <- n1+n2+n3; p <- 4; K <- 3

W <- (n1-1)*S1 + (n2-1)*S2 + (n3-1)*S3

m <- (n1*m1+n2*m2+n3*m3)/nrow(iris)

B <- n1*matrix(m1-m,ncol=1) %*% matrix(m1-m,nrow=1)

(n2*matrix(m2-m,ncol=1) %*% matrix(m2-m,nrow=1)) %>% round(2)

[,1] [,2] [,3] [,4]

[1,] 0.43 -1.33 2.33 0.59

[2,] -1.33 4.13 -7.21 -1.82

[3,] 2.33 -7.21 12.60 3.18

[4,] 0.59 -1.82 3.18 0.80

(n3*matrix(m3-m,ncol=1) %*% matrix(m3-m,nrow=1)) %>% round(2)

[,1] [,2] [,3] [,4]

[1,] 27.73 -3.10 66.80 30.78

[2,] -3.10 0.35 -7.48 -3.44

[3,] 66.80 -7.48 160.92 74.15

[4,] 30.78 -3.44 74.15 34.17

det(W)

[1] 22096.88

det(W+B)

[1] 457434.4

l <- det(W)/det(W+B)

-(n-1-.5*(p+K)) * log(l)

[1] 440.8937

1-pchisq(-(n-1-.5*(p+K)) * log(l), df=p*(K-1))

[1] 0

#Same calculations, but using package rrcov

library(rrcov)

Wilks.test(x=iris[,1:4], grouping=iris$Species, method='c')

130

##

One-way MANOVA (Bartlett Chi2)

##

data: x

Wilks' Lambda = 0.023439, Chi2-Value = 546.12, DF = 8.00, p-value < 2.2e-16

sample estimates:

Sepal.Length Sepal.Width Petal.Length Petal.Width

setosa 5.006 3.428 1.462 0.246

versicolor 5.936 2.770 4.260 1.326

virginica 6.588 2.974 5.552 2.026

5.3.5 Repeated measures analysis

Multivariate methods to compare mean vectors across groups are applied to a wide
variety of problems. However, there is a specific setup where they are especially
popular, which is referred to as Repeated measures.

Repeated measures studies collect multiple observations for each individual i =
1, . . . , n. These observations are recorded at particular points in time t = 1, . . . , T ,
for instance at one month (t = 1), three months (t = 2) and six months (t =
3) after surgery. In this situation, the observations for individual i may be quite
strongly correlated across t = 1, . . . , T . Hence, we cannot assume independence and
special data analysis methods are needed. Of course, there are other situations with
correlated outcomes that can be tackled with a repeated measures analysis, but for
simplicity we focus on studies with follow-up over time.

As an important particular case, when T = 2 we simply have two observations
per subject. This is the standard setup for a paired t-test, in which one computes
the differences between t = 1 and t = 2 (given by yi2 − yi1) before performing any
analysis. As we shall see, Repeated Measures Analysis is a generalization of the
paired t-test when we have T > 2 measurements.

To fix ideas, let Xki ∼ NT (µk,Σ) be the vector with the T observations for
individual i = 1, . . . , nk in group k = 1, . . . , K. A repeated measures analysis
considers that the mean can change over time and also between groups, so we have
a setup like that of a two-way ANOVA but where the residuals are expected to be
correlated. As in a two-way ANOVA, we may be interested in testing for interactions
between groups and time or in their main effects. As it turns out, these analyses can
be performed in a straightforward manner using the multivariate tests we introduced
in the previous sections.

Consider the example in Figure 43, showing the means for K = 2 groups followed
at T = 4 time points. In the left panel groups do not interact with time, since
the evolution over time is exactly the same in both groups. In statistical terms,
the effects of group and time are additive. In the right panel we do observe an
interaction between groups and time, as the grey group decreases faster than the

131

1.0 2.0 3.0 4.0

0
20

40
60

80
12

0

Time

R
es

po
ns

e ●

●

●

●

1.0 2.0 3.0 4.0

0
20

40
60

80
12

0

Time
R

es
po

ns
e

●

●

●

●

Figure 43: Repeated measures study with T = 4 time points and K = 2 groups.
Left panel: no time and group interaction; Right panel: time and group interaction

black group. This corresponds to a situation where the effects of group and time
are multiplicative.

When there is no interaction between group and time, so that each group evolves
equally over time, one may wish to test whether there is any evolution over time at
all. Statistically, this corresponds to testing for the main effect of time.

Similarly, in the absence of interactions one may wish to determine whether one
group always presents higher mean values than the other. In statistical terms, this
corresponds to testing for the main effect of the groups.

Time and group interaction.

Testing for interactions between time and group means that we want to de-
termine whether the evolution over time is the same for all groups. That is,
define evolution as the vector of mean differences over time in group k as

δk =

µk2 − µk1

µk3 − µk2

. . .
µkT − µkT−1

 .

In order to compare the evolution across groups the goal is to test

H0 : δ1 = . . . = δK = δ.

Testing this hypothesis is straightforward by noting that δk = Cµ, where

C =

−1 1 0 · · · 0 0
0 −1 1 · · ·
· · ·
0 0 0 . . . −1 1

 . (5.3.3)

132

Therefore, we can simply define Yki = CXki ∼ NT−1(δk, CΣC ′) and test H0

either using Hotelling’s T 2 statistic (for 2 groups) or Wilks’ lambda statistic
(for > 2 groups).

The hypothesis H0 is equivalent to the existence of µ0, (λk)
K
k=2 and (νt)

T
t=2 such

that

µkt = µ0 + λk + νt,

where we write λ1 = ν1 = 0. For this reason, a repeated measures model with
no interaction is sometimes referred to as an additive model. This model is
much simpler and easier to fit, having only K + T − 1 parameters compared
with the KT parameters of the full model.

Effect of time.

When the interaction between group and time is not statistically significant,
it makes sense to consider if there is a main effect of time. That is, we want
to test whether the means remain completely constant over time or not.

To perform this anaysis, we again define Yki = CXki with C as in (5.3.3).
However, we now assume that there is no interaction between group and time,
so that Yki ∼ NT−1(δ, CΣC ′) where δ now does not depend on k but is
common across all groups. The null hypothesis that there is no evolution over
time is simply

H0 : δ = 0,

and hence the problem is reduced to a one-sample test for a multivariate
Normal mean. As we saw in earlier sections, the test can be performed using
Hotelling’s T 2 statistic.

The null hypothesis that there is no interactive and no main effect of time is
equivalent to the existence of µ0 and (λk)

K
k=2 such that

µkt = µ0 + λk,

where we write λ1 = 0.

Main effect of groups.

When there is no interaction between groups and time it makes sense to test
for the main effects of the groups. That is, given that all groups evolve in a
similar manner over time, we wish to compare their means. The corresponding
null hypothesis is H0 : µ1 = · · · = µK , which can be easily tested using either
Hotelling’s T 2 or Wilks’ lambda statistic, as we saw in previous sections.

The null hypothesis that there is no interactive and no main effect of group is
equivalent to the existence of µ0 and (νt)

T
t=2 such that

µkt = µ0 + νt,

where we write ν1 = 0.

133

Intercept-only

If we find that there is no interaction, and moreover we find that there is no
effect of time (or no effect of group, depending on which test we chose to do),
we may wonder whether there is any difference between the data points at
all. The simplest model that we may consider, the intercept-only model, says
that neither group nor time has an effect, and we simply have µkt = µ0 for all
k = 1, . . . , K and t = 1, . . . , T .

Example 5.3.14. We take the body fat dataset from R package cccrm, which
measures the percentage of body fat on a series of girls at the ages of 12.5, 13 and
13.5 years. For each girl the three measurements are taken, so we have a repeated
measures study. For 82 girls body fat was estimated from skinfold calipers (method
1) and for 82 more girls it was estimated with a method called DEXA (method 2).

library(cccrm)

data(bfat)

#colnames(bfat)[4] <- 'met'

visit11 <- bfat[bfat$VISITNO==2 & bfat$MET==1,]

rownames(visit11) <- as.character(visit11$SUBJECT)

visit12 <- bfat[bfat$VISITNO==3 & bfat$MET==1,]

rownames(visit12) <- as.character(visit12$SUBJECT)

visit13 <- bfat[bfat$VISITNO==4 & bfat$MET==1,]

rownames(visit13) <- as.character(visit13$SUBJECT)

visit21 <- bfat[bfat$VISITNO==2 & bfat$MET==2,]

rownames(visit21) <- as.character(visit21$SUBJECT)

visit22 <- bfat[bfat$VISITNO==3 & bfat$MET==2,]

rownames(visit22) <- as.character(visit22$SUBJECT)

visit23 <- bfat[bfat$VISITNO==4 & bfat$MET==2,]

rownames(visit23) <- as.character(visit23$SUBJECT)

obs1 <- data.frame(subject=visit11$SUBJECT,

bf1=visit11$BF,bf2=visit12$BF,bf3=visit13$BF)

obs2 <- data.frame(subject=visit21$SUBJECT,

bf1=visit21$BF,bf2=visit22$BF,bf3=visit23$BF)

m1 <- colMeans(obs1[,-1]); S1 <- cov(obs1[,-1]); n1 <- nrow(obs1)

m2 <- colMeans(obs2[,-1]); S2 <- cov(obs2[,-1]); n2 <- nrow(obs2)

err1 <- 1.96*sqrt(diag(S1)/n1)

err2 <- 1.96*sqrt(diag(S2)/n2)

plot(c(12.5,13,13.5), m1,type='l',ylim=c(20,26),xlab='Age (years)',

ylab='% body fat',cex.lab=1.25)

points(c(12.5,13,13.5), m1,pch=15)

134

12.6 12.8 13.0 13.2 13.4

20
21

22
23

24
25

26

Age (years)

%
 b

od
y

fa
t

● ● ●

Figure 44: Average % body fat at 12.5, 13 and 13.5 years. Black line: method 1;
Grey line: method 2

lines(c(12.5,13,13.5), m2, col='gray')

points(c(12.5,13,13.5), m2,pch=16,col='gray')

segments(x0=c(12.5,13,13.5),y0=m1-err1,y1=m1+err1)

segments(x0=c(12.5,13,13.5),y0=m2-err2,y1=m2+err2,col='gray')

Figure 44 shows the means and 95% univariate confidence intervals for both
groups. We observe an increase between 12.5 and 13 years for method 1, whereas
method 2 measurements seem to remain stable. We start the repeated measures
analysis by testing for this hypothesized interaction between time and group. The
null hypothesis is

H0 :

(
µ12 − µ11

µ13 − µ12

)
=

(
µ22 − µ21

µ23 − µ22

)
.

To test H0 we compute the differences between successive visits, i.e. define Y =
(X2 −X1, X3 −X2)′. The mean and covariance of Y in each group are

Y1 =

(
1.59
−0.13

)
; S1 =

(
3.01 −0.57
−0.57 3.06

)
Y2 =

(
−0.04
0.07

)
; S2 =

(
2.23 −1.10
−1.10 3.51

)
Since the covariances do not appear to be extremely different, we assume Σ1 = Σ2

135

and compute the pooled covariance matrix

Sp =

(
2.62 −0.84
−0.84 3.28

)
.

#Time * group interaction

C <- matrix(c(-1,1,0,0,-1,1),byrow=TRUE,nrow=2)

d1 <- as.matrix(obs1[,-1]) %*% t(C)

md1 <- C %*% matrix(m1,ncol=1); Sd1 <- C %*% S1 %*% t(C)

d2 <- as.matrix(obs2[,-1]) %*% t(C)

md2 <- C %*% matrix(m2,ncol=1); Sd2 <- C %*% S2 %*% t(C)

Sp <- ((n1-1)*Sd1 + (n2-1)*Sd2)/(n1+n2-2)

p <- 2

T2 <- matrix(md1-md2,nrow=1) %*% solve(Sp/n1 + Sp/n2) %*%

matrix(md1-md2,ncol=1)

f <- (n1+n2-p-1) / (p * (n1+n2-2)) * T2

pval <- 1 - pf(f, df1=p,df2=n1+n2-p-1)

T2

[,1]

[1,] 43.22403

f

[,1]

[1,] 21.47861

pval

[,1]

[1,] 5.389975e-09

Hotelling’s statistic is therefore

T 2 = (Y1 −Y2)TS−1
p (Y1 −Y2)(1/n1 + 1/n2)−1 = 43.22,

so that
(n1 + n2 − 2− 1)

2(n1 + n2 − 2)
T 2 = 21.479,

and its corresponding p-value under an F2,n1+n2−2−1 is 5.39×10−9. There is a highly
significant interaction between time and the measurement method, matching our
observation in Figure 44.

#Effect of time

T2 <- n1 * matrix(md1,nrow=1) %*% solve(Sd1) %*% matrix(md1,ncol=1)

f <- T2 * (n1-p)/((n1-1)*p)

136

pval <- 1 - pf(f, df1=p,df2=n1-p)

T2

[,1]

[1,] 69.75136

f

[,1]

[1,] 34.44512

pval

[,1]

[1,] 1.617906e-11

T2 <- n2 * matrix(md2,nrow=1) %*% solve(Sd2) %*% matrix(md2,ncol=1)

f <- T2 * (n2-p)/((n2-1)*p)

pval <- 1 - pf(f, df1=p,df2=n2-p)

T2

[,1]

[1,] 0.1484117

f

[,1]

[1,] 0.07328975

pval

[,1]

[1,] 0.9293938

Now that we have seen that there is an interaction, we might be interested in
testing whether there are any differences over time within each group. To test the
effect of time within group 1 we compute T 2 = n1Y

′
S−1

1 Y = 69.751, so that

n1 − 2

(n1 − 1)2
T 2 = 34.445

and the corresponding P-value under an F2,n1−p is 1.62×10−11. To test the effect of

time within group 2 we find T 2 = n2Y
′
S−1

2 Y = 0.148, so that

n2 − 2

(n2 − 1)2
T 2 = 0.073

and the corresponding P-value under an F2,n2−p is 0.9294. Therefore, we find sta-
tistically significant changes over time for method 1 but not for method 2, again

137

matching what we observe in Figure 44.

5.4 Checking multivariate Normality

Most of the results we saw either assume a multivariate Normal distribution or
that the sample size is large enough for the Central Limit Theorem to kick in. Of
course, in real life data are never truly Normally distributed, but when the sample
size is moderately small it is useful to assess whether the Normal distribution is
a reasonable approximation. There are various methods for checking multivariate
normality, and a good R package implementing them is MVN. We will only discuss
some simple tests for assessing multivariate normality.

First, recall that if X1, . . . ,Xn
iid∼ X are i.i.d. MVN, then any 1D linear projec-

tions of them are MVN (Proposition 5.1.6). In fact, this is even a characterization
of the MVN distribution. So now we know that for any non-random v ∈ Rp,
vTX1, . . . ,v

TXn should be an i.i.d. sample from a univariate normal distribution.
Therefore one can pick a couple of univariate projections (given by vs), and check
if they are Gaussian. This can be done for instance by comparing histograms with
the Gaussian density, or by producing a Gaussian QQ-plot.

Example 5.4.1. Consider the dataset rating the importance of p = 11 items for
n = 63 students to be happy with a course. In order to assess the extent to which
the multivariate Normal is a reasonable assumption, we first start by looking at
the distribution of each variable separately. We see a histogram of the first two
variables in Figure 45. Although variable 2 could be Gaussian, variable 1 is highly
non-Gaussian (there is no central mode), and therefore the data is not MVN.

Check normality

x <- read.table('~/st323/data/course_happy_nomiss.txt',header=TRUE)

x <- as.matrix(x[,1:11])

m <- colMeans(x); S <- cov(x)

n <- nrow(x); p <- ncol(x)

d <- mahalanobis(x, center=m, cov=S) * (n-p)/((n-1)*p)

op <- par(mfrow=c(1,2))

hist(x[,1], 'FD')

hist(x[,2], 'FD')

par(op)

Using the MVN package, we get the following output:

library(MVN)

sROC 0.1-2 loaded

mvn_test <- mvn(x)

mvn_test$multivariateNormality

138

Histogram of x[, 1]

x[, 1]

F
re

qu
en

cy

60 70 80 90 100

0
5

10
15

20
25

Histogram of x[, 2]

x[, 2]
F

re
qu

en
cy

30 50 70 90

0
5

10
15

Figure 45: Histogram of the first variable (left) and the second variable (right) for
the “happy with the course” dataset.

Test Statistic p value Result

1 Mardia Skewness 570.960904545477 3.75421755283091e-21 NO

2 Mardia Kurtosis 9.35237199555605 0 NO

3 MVN <NA> <NA> NO

mvn_test$univariateNormality

Test Variable Statistic p value Normality

1 Shapiro-Wilk Teacher_explaining 0.8720 <0.001 NO

2 Shapiro-Wilk Teacher_enthusiastic 0.9531 0.0176 NO

3 Shapiro-Wilk Teacher_material_interesting 0.8559 <0.001 NO

4 Shapiro-Wilk Material_stimulating 0.9222 7e-04 NO

5 Shapiro-Wilk Material_useful 0.8724 <0.001 NO

6 Shapiro-Wilk Clear_marking 0.9024 1e-04 NO

7 Shapiro-Wilk Marking_fair 0.8360 <0.001 NO

8 Shapiro-Wilk Feedback_prompt 0.9312 0.0017 NO

9 Shapiro-Wilk Feedback_clarifies 0.8178 <0.001 NO

10 Shapiro-Wilk Detailed_comments 0.8709 <0.001 NO

11 Shapiro-Wilk Notes 0.7340 <0.001 NO

In particular, the “Mardia Skewness” test (which tests joint normality of the
variables) gives a ridiculously small p-value (under the null hypothesis that the data
is MVN). This corroborates our conclusion that the data is not MVN. The variable-
wise tests ”Shapiro-Wilk” also corroborate that the first variable is non-Gaussian,
but provide in comparison weaker evidence that the second variable is non-Gaussian.
Notice that the package does not returns the true p-value for the test on the first

139

variable, but only returns “< 0.001”. This is bad practice, and should be avoided.

140

6 Classification (or Supervised Learning)

6.1 Basic Theory of Classification

The goal in classification is to assign individuals to a group (or class) amongst several
possible groups. Here we do know which groups are present in the data (in contrast
to clustering, which we shall see later), and we want to classify the data into these
groups. For clarity here we focus on the case with two groups, but most of the ideas
we will see extend directly to cases with an arbitrary number of groups.

Let Y = 1 indicate that an individual belongs to group 1, and Y = 2 that it
belongs to group 2. Also suppose that we observe a set of variables X for that
individual. The goal is to guess the group given that we observe X = x. Here we
will assume that x ∈ Rp, although in general it could be any kind of data that can
help us predict Y . Of course, the underlying hope is that X has some predictive
power that will help us discern the groups, otherwise our predictions will be no
better than random guesses.

Denote by f(x | Y = 1) the probability density function of X for individuals
in group 1, and f(x | Y = 2) that for group 2. Further, let π1 = P(Y = 1) and
π2 = P(Y = 2) be the prior probabilities for each class before observing x. From
these we can find the probability that an individual with variables x belongs to each
group, namely

P(Y = 1 | x) =
f(x | Y = 1)π1

f(x | Y = 1)π1 + f(x | Y = 2)π2

(6.1.1)

and P(Y = 2 | x) = 1 − P(Y = 1 | x). The result follows directly from Bayes’
theorem. Notice that when X and Y are independent, then f(x | Y = 1) = f(x |
Y = 2) and hence P(Y = 1 | x) = π1.

We now define the concept of a classification rule.

Definition 6.1.1 (Classification rule).
A classification rule is a function mapping x ∈ Rp to {1, 2}. Equiva-

lently, define the classification regions R1 and R2 = Rp \R1 such that

• If x ∈ R1, we predict Y = 1,

• If x ∈ R2, we predict Y = 2.

Figure 46 shows an example with a classification rule for x ∈ R2. According to
this rule, all observations falling on the left of the curvy boundary are assigned to
group 1, whereas observations to the right of the boundary are allocated to group
2.

Our goal will be to define classification rules that perform well in terms of cor-
rectly classifying individuals or, more generally, minimizing the cost of misclassifi-
cations. Given any classification rule, the probabilities of correctly classifying an

141

−2 −1 0 1 2 3 4

−
0.

5
0.

0
0.

5

x1

x2 R1 R2

Figure 46: Classification rule for x ∈ R2

individual into each class are

P(Y = 1,x ∈ R1) = P(x ∈ R1 | Y = 1)π1 = π1

∫
x∈R1

f(x | Y = 1)dx

and

P(Y = 2,x ∈ R2) = P(x ∈ R2 | Y = 2)π2 = π2

∫
x∈R2

f(x | Y = 2)dx.

Similarly, the misclassification probabilities are

P(Y = 2,x ∈ R1) = P(x ∈ R1 | Y = 2)π2 = π2

∫
x∈R1

f(x | Y = 2)dx

and

P(Y = 1,x ∈ R2) = P(x ∈ R2 | Y = 1)π1 = π1

∫
x∈R2

f(x | Y = 1)dx.

A common goal in a classification analysis is to achieve high correct classification
and low misclassification probabilities. However, one should also consider that the
consequences of each correct and incorrect decision can be quite different. For
instance, scientists in Italy recently found that failing to predict an earthquake has
much more severe consequences (for everyone involved) than incorrectly predicting
that there will be an earthquake. In other words, each misclassification can have
different costs, which can be easily taken into account by considering the following
table

Truth
Prediction Y = 1 Y = 2

g(x) = 1 0 c2

g(x) = 2 c1 0

142

where g : Rp → {1, 2} is a classification rule, and c2, c1 ∈ R+. That is, c2 is the cost
of misclassifying an observation (to group 1) when it truly belongs to group 2, and
c1 of misclassifying (to group 2) an observation that truly belongs to group 1. As
we shall see in a moment, only the ratio c2/c1 matters so without loss of generality
we can set c1 = 1. Following a decision-theoretic argument, a reasonable goal is to
minimize the expected cost of misclassification. Let cost(Y, g(X)) be the function
defined in the table above.

Proposition 6.1.2 (Expected cost of misclassification).
Suppose we use the classification rule g : Rp → {1, 2}, that assigns to

group 1 when x ∈ R1 and to group 2 when x ∈ R2. The expected cost of
misclassification associated to the rule g is

E [cost(Y, g(X))] = c2 P(x ∈ R1 | Y = 2)π2 + c1 P(x ∈ R2 | Y = 1)π1

(6.1.2)

Proof. Left as a exercise.

The following result tells us that one can minimize the expected misclassification
cost using a fairly simple classification rule.

Proposition 6.1.3 (Bayes’ Classifier).
The rule minimizing the expected cost of misclassification (6.1.2) for a

given x is to define R1 as

R1 , {x : f(x | Y = 1)π1c1 > f(x | Y = 2)π2c2} ,

and R2 as its complement. Equivalently,

R1 ,

{
x :

f(x | Y = 1)π1

f(x | Y = 2)π2

>
c2

c1

}
.

This classification rule is called the Bayes classifier.

Proof. See video.

As an important remark, the optimal rule requires knowing f(x | Y = 1) and
f(x | Y = 2). In general these densities are not known and must be estimated from
the data, in which case Proposition 6.1.3 does not directly apply anymore. The
Proposition also requires the class prior probabilities π1,π2, which may not always
be available.

Remark 6.1.4 (Bayes’ classifier using posterior class probabili-
ties). Assuming that the marginal distribution of X ∈ Rp has a density
f , notice that we only need to define the classification rule on the set
{x ∈ Rp : f(x) > 0}. In this case, we have that Bayes’ classifier can be

143

re-written as

R1 , {x ∈ Rp : c1 P(Y = 1|X = x) > c2 P(Y = 2|X = x)}.

It turns out it that is possible to extend Proposition 6.1.3 within the Bayesian
paradigm and find the optimal rule when the densities are not known, but we shall
not pursue this here. We will simply note that in practice one typically estimates
the required quantities, as we shall see later on.

Proposition 6.1.3 tells us a general recipe to obtain the optimal rule. The expres-
sion can be simplified even further when either the costs or the prior probabilities
are equal.

Proposition 6.1.5 (Bayes’ classifier in special cases).

1. Equal prior probabilities. If π1 = π2 then

R1 , {x : f(x | Y = 1)c1 > f(x | Y = 2)c2} .

2. Equal misclassification costs. If c2/c1 = 1 then

R1 , {x : f(x | Y = 1)π1 > f(x | Y = 2)π2} .

3. Equal prior probabilities and costs. If π1 = π2 and c2/c1 = 1 then

R1 , {x : f(x | Y = 1) > f(x | Y = 2)} .

In fact, many classification procedures attempt to classify individuals into the
class with highest probability. Such methods make the implicit assumption that
c2 = c1, i.e. equal misclassification costs.

There are also methods that classify individuals using only the likelihood under
each class f(x | Y = 1) and f(x | Y = 2). Even if c2 = c1, these methods will
be sub-optimal unless π1 = π2. That is, whenever possible we want to take into
account the prior probability of each class.

Example 6.1.6. Suppose that physicists observe certain measurements x that help
predict whether an earthquake will take place (Y = 1) or not (Y = 2) in the next
24 hours. Further suppose that based on historical information, it is known that the
density of x when there truly is going to be an earthquate is f(x | Y = 1) = 0.25.
Also, it is known that f(x | Y = 2) = 0.01. That is, the observed data are much
more likely when there is going to be an earthquake.

Suppose that from historical data we also know that on average only 1 earthquake
per year occurs in the location of interest. That is, π1 = 1/365 and π2 = 1 − π1.
After observing x, the probability of an earthquake in the next 24 hours is

P(Y = 1 | x) =
f(x | Y = 1)π1

f(x | Y = 1)π1 + f(x | Y = 2)π2

144

=
0.25 1

365

0.25 1
365

+ 0.01364
365

= 0.0643.

Based on the observed data, there is a fairly high probability that the earthquake
will not happen. However, a prudent decision maker should also consider the cost of
making a wrong decision. Because failing to predict an actual earthquake has very
severe consequences, an expert tells us that c2 = 1 and c1 = 100. We therefore get

c1 P(Y = 1 | x) = 6.43

and
c2 P(Y = 2 | x) = 0.9357.

Based on these Bayes’ classifier tells us to predict that an earthquake is going to
happen (Y = 1), despite its actual probability being fairly low.

As an exercise, let us determine the range of costs c1 for which the optimal
decision would still be to predict an earthquake (we set c2 = 1 without loss of
generality). We should predict Y = 1 whenever

f(x | Y = 1)π1c1 > f(x | Y = 2)π2

⇐⇒ 0.25
1

365
c1 > 0.01

364

365
⇐⇒ c1 > 14.56.

That is, as long as the cost of failing to predict an earthquake is at least 14.56
times that of predicting an earthquake that actually fails to occur, we should predict
an earthquake to avoid potential catastrophic consequences.

6.2 Classification for multivariate Normal predictors

Recall that Proposition 6.1.3 gives us the general recipe to obtain optimal classifica-
tions for any class-specific densities f(x | Y = 1) and f(x | Y = 2). It is interesting
to study the case where both densities are Normal, as then the resulting rule has
an intuitive, appealing interpretation. Specifically, in this Section we assume that
X|Y = y ∼ Np(µy,Σy) for y = 1, 2, where both Σ1 and Σ2 are SPD.

Consider first the case with equal covariances Σ1 = Σ2. We have the following
result:

Proposition 6.2.1 (Optimal rule for MVN data and equal covari-
ances).

Let f(x | Y = y) be the density of a Np(µy,Σ), y = 1, 2. Letting
b = Σ−1(µ1 − µ2), the Bayes classifier assigns a new observation x ∈ Rp

to group 1 when

xTb >
1

2
(µ2 + µ1)Tb + log

(
π2

π1

c2

c1

)

145

and to group 2 otherwise.

Proof. See video. The ratio of likelihoods in Proposition 6.1.3 becomes

f(x | Y = 1)

f(x | Y = 2)
= e

1
2

(x−µ2)TΣ−1(x−µ2)− 1
2

(x−µ1)TΣ−1(x−µ1)

= e
1
2
µT

2Σ−1µ2− 1
2
µT

1Σ−1µ1−xTΣ−1µ2+xTΣ−1µ1

= e
1
2(µT

2Σ−1µ2−µT
1Σ−1µ1)+xTΣ−1(µ1−µ2)

= e
1
2

(µ2+µ1)TΣ−1(µ2−µ1)+xTΣ−1(µ1−µ2).

Therefore, the optimal rule is to classify into group 1 whenever

1

2
(µ2 + µ1)TΣ−1(µ2 − µ1) + xTΣ−1(µ1 − µ2) > log

(
π2

π1

c2

c1

)
.

Recall that xTb is the projection of x on b. The rule compares the projection
of x with that of the midpoint between µ1 and µ2. In particular, when π1 = π2

and c2 = c1 the rule is to assign to group 1 whenever the projection of x is closer to
µ1 than to µ2, and vice versa. The expression also reveals that the optimal rule is
linear in x.

Example 6.2.2. Consider a case of two Normal populations with

µ1 =

(
0
0

)
;µ2 =

(
3
3

)
; Σ1 = Σ2 =

(
1 −0.5
−0.5 1

)
.

Figure 47 (top subfigures) shows the contours for the densities in each group
f(x | Y = 1) and f(x | Y = 2). Let us first assume that π1 = π2 and c2 = c1 and let
b = Σ−1(µ1−µ2) = (−6,−6)T, then the optimal decision rule is to assign to group
1 whenever

xT

(
−6
−6

)
> (1.5, 1.5)

(
−6
−6

)
= −18 ⇐⇒ −6x1 − 6x2 > −18 ⇐⇒ x2 < 3− x1,

which is a linear decision rule. The optimal boundary is shown in the top left panel
of Figure 47 as a straight line.

Suppose now that group 1 has higher a priori probability than group 2, say
π1 = 0.9 and π2 = 0.1. These prior probabilities might arise, for instance, because
group 1 corresponds to healthy individuals and group 2 to a relatively uncommon
disease. The new optimal rule is given by

−6x1 − 6x2 > −18 + log(1/9) ⇐⇒ x2 < 3.366− x1.

That is, we obtain a line with the same slope but different intercept, shown in the
top right panel of Figure 47. Here the effect of unequal prior probabilities becomes

146

obvious. Because group 2 is much less common (a priori) than group 1, we allocate
individuals to group 1 unless there is overwhelming evidence in favor of group 2 (in
the sense that the density is much higher).

Figure 47 (bottom subfigures) shows the optimal classification rule for the same
µ1,Σ as above, but for µ2 = (−1, 4)T. The bottom left subfigure is for π1 =
π2, c1 = c2, and the bottom right subfigure is for π1 = 0.9, c1 = c2. Notice that
the classification boundary line is not aligned with any eigenvector of the covariance
matrix Σ.

Optimal rule for Normal case, Sigma1=Sigma2

m2list <- list(c(3,3), c(-1,4))

op <- par(mfrow=c(2,2), mai=rep(.1, 4))

for(i in seq(along=m2list)){
m1 <- c(0,0);

m2 <- m2list[[i]]

S1 <- S2 <- matrix(c(1,-.5,-.5,1),nrow=2)

m <- .5*(m1+m2); b <- as.vector(solve(S1) %*% matrix(m1-m2,ncol=1))

mb <- sum(m*b)

pi1 <- 0.9; pi2 <- 0.1

library(mvtnorm)

xseq <- seq(-3,3,length=100)

xgrid <- expand.grid(xseq,xseq)

fx <- dmvnorm(xgrid, mean=m1, sigma=S1)

contour(x=xseq,y=xseq,z=matrix(fx,nrow=length(xseq)), xlim=c(-3,6),

ylim=c(-3,6),drawlabels=FALSE, xaxt='n', yaxt='n')

xseq <- seq(-6,8,length=100)

xgrid <- expand.grid(xseq,xseq)

fx <- dmvnorm(xgrid, mean=m2, sigma=S2)

#par(new=TRUE)

contour(x=xseq,y=xseq,z=matrix(fx,nrow=length(xseq)), xlim=c(-3,6),

ylim=c(-3,6),drawlabels=FALSE,lwd=1,lty=2, add=TRUE)

#

abline(mb/b[2], -b[1]/b[2], col='blue', lwd=3)

text(-2,-2,'R1',cex=2); text(5,5,'R2',cex=2)

xseq <- seq(-3,3,length=100)

xgrid <- expand.grid(xseq,xseq)

fx <- dmvnorm(xgrid, mean=m1, sigma=S1)

contour(x=xseq,y=xseq,z=matrix(fx,nrow=length(xseq)), xlim=c(-3,6),

147

ylim=c(-3,6),drawlabels=FALSE, xaxt='n', yaxt='n')

xseq <- seq(-6,8,length=100)

xgrid <- expand.grid(xseq,xseq)

fx <- dmvnorm(xgrid, mean=m2, sigma=S2)

contour(x=xseq,y=xseq,z=matrix(fx,nrow=length(xseq)), xlim=c(-3,6),

ylim=c(-3,6),drawlabels=FALSE,lwd=1,lty=2, add=TRUE)

#

abline(mb/b[2]-log(pi2/pi1), -b[1]/b[2], col='blue', lwd=3)

text(-2,-2,'R1',cex=2); text(5,5,'R2',cex=2)

}
par(op)

Let us now consider the case where covariances are different. We have the fol-
lowing result.

Proposition 6.2.3 (Optimal rule for Normal data and unequal
covariances).

Let f(x | Y = y) be the density of a Np(µy,Σy), for y = 1, 2. Bayes’
classifier assign a new observation x ∈ Rp to group 1 when

−1

2
xTBx + xTb > log

(
π2

π1

c

c1

)
− k

and to group 2 otherwise, where B = Σ−1
1 −Σ−1

2 , b = Σ−1
1 µ1−Σ−1

2 µ2 and

k =
1

2

(
log

(
det(Σ2)

det(Σ1)

)
+ µT

2 Σ−1
2 µ2 − µT

1 Σ−1
1 µ1

)
.

Proof. This is similar to the proof of Proposition 6.2.1, but extended to the case
where Σ1 6= Σ2. Left as an exercise.

The optimal rule when Σ1 6= Σ2 depends on a quadratic function of x. Of course,
when Σ1 = Σ2 the expression simplifies to the linear rule given in Proposition 6.2.1.

Example 6.2.4. Consider a case of two Normal populations with

µ1 =

(
0
0

)
, µ2 =

(
1
3

)
, Σ1 =

(
1 0
0 1

)
, Σ2 =

(
1 0.5

0.5 1

)
,

and consider equal prior class probabilities π1 = π2 and misclassification costs c2 =
c1.

Doing the appropriate computations we obtain that k = 4.52 and

B =

(
−1

3
2
3

2
3
−1

3

)
, b =

(
2/3
−10/3

)
.

148

R1

R2

R1

R2

R1

R2

R1

R2

Figure 47: Optimal rule for two Normal populations. Top: µ1 = (0, 0)T, µ2 =
(3, 3)T; Bottom: same µ1, but µ2 = (−1, 4), and common σ11 = σ22 = 1, σ12 = −0.5
across both groups. Left: π1 = π2,c2 = c1; Right: π1 = 0.9,c2 = c1. Notice that
the classification boundary is not necessarily aligned with an eigenvector of the
covariance, nor is it orthogonal to µ1 − µ2.

149

Hence the optimal rule is to assign to group 1 when

−1

2

(
−1

3
x2

1 −
1

3
x2

2 +
4

3
x1x2

)
+

2

3
x1 −

10

3
x2 + 4.52

=
x2

1

6
+
x2

2

6
− 2

3
x1x2 +

2

3
x1 −

10

3
x2 + 4.52 > 0.

Figure 48 shows the contours of the densities under each group, and the classi-
fication regions under the optimal rule.

m1 <- c(0,0); m2 <- c(1,3)

S1 <- matrix(c(1,0,0,1),nrow=2)

S2 <- matrix(c(1,.5,.5,1),nrow=2)

B <- solve(S1) - solve(S2)

b <- solve(S1) %*% matrix(m1,ncol=1) - solve(S2) %*% matrix(m2,ncol=1)

k <- .5*(log(det(S2)/det(S1)) + matrix(m2,nrow=1) %*% solve(S2) %*%

matrix(m2,ncol=1) - matrix(m1,nrow=1) %*%

solve(S1) %*% matrix(m1,ncol=1))

x1seq <- seq(-10,15,length=10^4)

cf <- cbind(-.5*B[2,2], b[2] - .5*B[1,2]*x1seq, k -.5*B[1,1]*x1seq^2 +

b[1]*x1seq)

root <- t(apply(cf, 1, function(z) polyroot(rev(z))))

sel <- rowSums(abs(Im(root))< 10^(-5))==2

#

library(mvtnorm)

xseq <- seq(-3,3,length=100)

xgrid <- expand.grid(xseq,xseq)

fx <- dmvnorm(xgrid, mean=m1, sigma=S1)

contour(x=xseq,y=xseq,z=matrix(fx,nrow=length(xseq)), xlim=c(-3,6),

ylim=c(-3,6),drawlabels=FALSE, asp=1)

xseq <- seq(-6,6,length=100)

xgrid <- expand.grid(xseq,xseq)

fx <- dmvnorm(xgrid, mean=m2, sigma=S2)

contour(x=xseq,y=xseq,z=matrix(fx,nrow=length(xseq)), xlim=c(-3,6),

ylim=c(-3,6),drawlabels=FALSE,lwd=1,lty=2, add=TRUE)

#

lines(x1seq[sel], root[sel,1], col='blue', lwd=3)

lines(x1seq[sel], root[sel,2], col='blue', lwd=3)

text(-3,0,'R1',cex=1.5); text(-2,5,'R2',cex=1.5)

6.3 Data-based classifiers and out-of-sample performance

Our results so far assumed that the class-specific densities f(x | Y = 1) and f(x |
Y = 2) were known. In practice, these densities are not known and must be inferred

150

−5 0 5 10

−
2

0
2

4
6

R1

R2

Figure 48: Optimal rule for two Normal populations with µ1 = (0, 0)T, µ2 = (1, 3)T,
common σ11 = σ22 = 1 and correlation 0 in group 1 and 0.5 in group 2.

from the observed data. This task can be challenging, especially when the predictor
x is high-dimensional. On the one hand, assuming an overly simple parametric form
may fail to capture important features, resulting in poor predictions. On the other
hand, more flexible or non-parametric estimates may be quite unstable unless the
sample size is very large, again resulting in poor predictions.

An implication is that, because we do not know the class-specific densities, the
optimal rule given in Proposition 6.1.3 no longer applies. In this situation, one
typically compares the performance of several classifiers empirically.

A naive approach to assess correct and incorrect classification rates is to deter-
mine the classification regions R1, R2 from the observed data (y1,x

T
1), . . . , (yn,x

T
n).

Then one simply compares the predictions ŷ1, . . . , ŷn with the observed y1, . . . , yn to
build the so-called confusion matrix.

Definition 6.3.1 (Confusion matrix).
Let yi be the observed class for individual i = 1, . . . , n, and let ŷi be the

predicted class. The confusion matrix is the following 2× 2 contingency
table comparing yi with ŷi.

Observed
Predicted y = 1 y = 2

ŷ = 1 a b
ŷ = 2 c d

151

An obvious and very serious limitation of this approach is that it uses the same
data for training the classification algorithm (i.e. determining R1,R2) and evaluating
its predictive accuracy. The consequence is that this naive approach will tend to
over-estimate the classification power. Even worse, the over-estimation will be more
pronounced for complex rules depending on many parameters than for simpler rules,
so that we cannot even use this approach to compare rules.

Fortunately, there is an easy alternative based on dividing the observed data
into a training data set and a test data set. The training set is used to define the
classification rule, which is then applied to the test data set. Because observations
in the test data were not used to calibrate the classifier, there is no possibility of
over-fitting. Literally dividing the observed data into two sets is not very convenient,
as it requires having a large sample size. The usual approach is to use leave-one-out
cross-validation, which is based on iteratively leaving one observation out.

Algorithm 6.3.1 (confusion matrix using leave-one-out cross-validation).

For i = 1, . . . , n do the following steps:

1. Exclude the ith observation (Yi,x
T
i) from the data.

2. Use the remaining data to determine the regions R
(i)
1 ,R

(i)
2 .

3. If xi ∈ R(i)
1 set Ŷi = 1, else Ŷi = 2.

Build a confusion matrix (Definition 6.3.1) comparing Yi and Ŷi.

There are other versions of cross-validation, such as k-fold cross validation, where
the sample is divided into k subsamples of (approximately) equal size, k−1 of which
are used to train/estimate the classifier ĝ, and it is then evaluated on the omitted
subsample. The procedure is then repeated by leaving out each of the k subsamples.
The whole process is repeated for a (sufficiently large) number of random splitting
of the data into k groups. Notice that leave-one-out cross-validation is the same as
n-fold cross-validation.

Example 6.3.2. We consider Anderson’s Iris data with 4 measurements for multi-
ple flowers, and select only flowers from species Versicolor or Virginica. A Principal
Components plot suggests that the density of the data can be reasonably approx-
imated with a multivariate Normal, so we apply the optimal classification rule as-
suming Σ1 6= Σ2. Here since the number of Versicolor and Virginica flowers is
the same, we set π1 = π2. Assume we have no preference in terms of misclassification
costs, so c2 = c1.

The table below shows the confusion matrix, where we used the same data both
to train and test the classifier.

Versicolor Virginica
Versicolor 48 1
Virginica 2 49

152

From the table one would naively estimate that the probability of correct clas-
sifications is 97/100. As discussed before, this estimate tends to be over-optimistic,
and we should rather use cross-validation.

Below we show the R code required to run the classifier. We define a function
normclassif that estimates µ1,µ2, Σ1,Σ2 from the training data x, and then applies
the classifier both to x and to test data xnew that was not used for the estimation
part.

normclassif <- function(x, groups, xnew, priorprob=c(.5,.5),

costs=c(1,1)) {
#2 group classifier based on multiv Normal, unequal covar

- x: training set

- groups: group labels for training set

- xnew: test set

- priorprob: P(class 1), P(class 2)

- costs: misclassification costs c_2, c_1

library(mvtnorm)

if (nrow(x)!=length(groups)) stop("nrow(x) != length(groups)")

g1 <- unique(groups)[1]

g2 <- unique(groups)[2]

m1 <- colMeans(x[groups==g1,])

S1 <- cov(x[groups==g1,])

m2 <- colMeans(x[groups==g2,])

S2 <- cov(x[groups==g2,])

logf1 <- dmvnorm(x,mean=m1,sigma=S1,log=TRUE)

logf2 <- dmvnorm(x,mean=m2,sigma=S2,log=TRUE)

logct <- log(priorprob[1]/priorprob[2]) - log(costs[2]/costs[1])

class1 <- logf1-logf2 + logct > 0

xpred <- ifelse(class1,as.character(g1),as.character(g2))

if (!missing(xnew)) {
logf1 <- dmvnorm(xnew,mean=m1,sigma=S1,log=TRUE)

logf2 <- dmvnorm(xnew,mean=m2,sigma=S2,log=TRUE)

class1 <- logf1-logf2 + logct > 0

xnewpred <- ifelse(class1,as.character(g1),as.character(g2))

ans <- list(xpred=xpred, xnewpred=xnewpred)

} else {
ans <- list(xpred=xpred, xnewpred=NA)

}
return(ans)

}

data(iris)

x <- iris[iris$Species!='setosa',]

groups <- factor(x$Species)

x <- x[,1:4]

153

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●●

●
●

●

●●

−2 −1 0 1 2

−
0.

5
0.

0
0.

5

PC1

P
C

2

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●
●

●

●●●

−2 −1 0 1 2

−
0.

5
0.

0
0.

5

PC1
P

C
2

Figure 49: Principal components for Anderson’s Iris data, selecting species Versicolor
and Virginica. Left: observed data; Right: cross-validated predictions.

op <- par(mfrow=c(1,2))

z <- prcomp(x)

pch <- ifelse(as.numeric(groups)==1,1,17)

plot(z$x[,1:2],pch=pch)

pred <- normclassif(x, groups=groups)

table(pred$xpred,groups)

groups

versicolor virginica

versicolor 48 1

virginica 2 49

With the function normclassif in place, we now turn to cross-validation, by
iteratively leaving 1 observation out and making a prediction for that observation.
We then compare these cross-validated predictions with the true group labels, finding
that there were 96/100 correct classifications. In this particular example, cross-
validation does not change the estimated correct classification rate by much, but
as we shall see in other examples the difference can be quite important. The right
panel in Figure 49 shows the cross-validated predictions.

pred.cv <- character(nrow(x))

for (i in 1:nrow(x)) {
fit <- normclassif(x[-i,], groups=groups[-i], xnew=x[i,])

154

pred.cv[i] <- fit$xnewpred

}
table(pred.cv,groups)

groups

pred.cv versicolor virginica

versicolor 47 1

virginica 3 49

6.4 Linear Discriminant Analysis

Fisher proposed a classification rule called linear discriminant analysis (LDA) which
turns out to be equivalent to the Bayes classifier for multivariate Normal data with
common covariance matrix across groups and π1 = π2, c1 = c2. The interesting point
is that he arrived to this solution through a completely different argument, and in
fact never assumed to have Normal data. LDA arises as the optimal linear classifier
in terms of achieving separation between groups.

Let x1i ∈ Rp for i = 1, . . . , n1 be the observed predictor values in group 1 and
x2i ∈ Rp for i = 1, . . . , n2 be those in group 2. The goal in LDA is to find a
linear combination zji = aTxji ∈ R such that the ratio of variability between groups
relative to the total variability is maximized. That is, we want to find coefficients
a ∈ Rp to maximise

(z̄1 − z̄2)2

s2
z

=
(aT(x1 − x2))2

aTSpa
, (6.4.1)

where z̄j is the sample mean of (zji)i for j = 1, 2, s2
z is the pooled variance of zij,

s2
z =

1

n1 + n2 − 2

2∑
j=1

nj∑
i=1

(zji − z̄j)2,

and Sp the pooled covariance matrix of xji,

Sp =
1

n1 + n2 − 2

2∑
j=1

nj∑
i=1

(xji − x̄j)(xji − x̄j)
T.

Here we need to assume that Sp is SPD, otherwise the maximum of (6.4.1) would
be infinity. This forces us to have n1 + n2 ≥ p+ 2. Thus if we have less data points
than the dimension of the data, LDA is not applicable. Also, even if there is enough
data, it is possible that Sp is not SPD: for instance in the ZIP code dataset, taking
only digits 0, 1, the sample size is larger than p+ 2, but the pooled covariance is not
SPD:

155

if(!exists('zip_code'))

{
zip_code <- read.table("~/st323/data/zip.train")

digit <- zip_code[,1] ## the digit label

zip.mat <- as.matrix(zip_code[,-1])

}

X0 <- zip.mat[digit==0,]

X1 <- zip.mat[digit==1,]

Sp <- ((nrow(X0)-1)*cov(X0) + (nrow(X1)-1)*cov(X1))/

(nrow(X0) + nrow(X1) - 2)

imin <- Sp %>% diag %>% which.min ##

print(paste0(nrow(X0)+nrow(X1), ' data points in ', ncol(X0),

' dimensions'))

[1] "2199 data points in 256 dimensions"

print(paste0("The minimal entry of the diagonal of the pooled

covariance is ", Sp[imin, imin])) ##

[1] "The minimal entry of the diagonal of the pooled

covariance is 0"

Figure 50 illustrates the idea behind LDA: we are looking for projections of the
data that best separates the two groups.

As we shall see in Proposition 6.4.1 there is a simple expression for a. But let
us assume for a moment that a is known, then the rule is assign a new observation
x∗ to group 1 whenever its projection is closer to z̄1 than to z̄2, that is

(aTx∗ − z̄1)2 < (aTx∗ − z̄2)2

⇔ z̄2
1 − 2z̄1a

Tx∗ < z̄2
2 − 2z̄2a

Tx∗

⇔ z̄2
1 − z̄2

2 < 2(z̄1 − z̄2)aTx∗.

We would like to simplify the last inequality by dividing by (z̄1 − z̄2), but we don’t
know its sign. . . . It turns out that this value is positive for a ∈ Rp that maximizes
(6.4.1). We have the following result.

Proposition 6.4.1 (Fisher’s Linear Discriminant Analysis).
Assume x1 6= x2. The maximizer of (6.4.1) is

a , S−1
p (x1 − x2),

where Sp is the pooled covariance matrix (assumed to be non-singular, i.e.
n1 + n2 − 2 ≥ p).

The rule is to allocate x∗ to group 1 if

aTx∗ >
1

2
(z̄1 + z̄2) =

1

2
aT(x1 + x2)

156

Figure 50: Several 1D projections of part of the iris dataset (versicolor and
virginica species), and the corresponding species densities estimates. Notice that
some of the projections separate well the two species, whereas some do not separate
the species well.

157

and to allocate to group 2 otherwise.

Proof. We first prove the following result: for any symmetric positive definite (SPD)
p× p matrix S and non-zero u ∈ Rp, Then for any non-zero a ∈ Rp

max
a6=0

(aTu)2

aTSa
= uTS−1u,

and the maximum is attained for a = S−1u. Indeed,

(aTu)2 =
(
(S1/2a)T(S−1/2u)

)2 ≤ (aTSa)(uTS−1u),

by the Cauchy–Schwartz inequality, and setting a = S−1u we get an equality.
Given this result, setting u = x̄1 − x̄2, we see that the maximizer of (6.4.1) is

given by a = S−1
p (x1 − x2) We now need to find the classification rule: we already

know that we classify a new observation x∗ to group 1 if

z̄2
1 − z̄2

2 < 2(z̄1 − z̄2)aTx∗.

Now notice that z̄1 − z̄2 = aT(x1 − x2) = (x1 − x2)TS−1
p (x1 − x2) > 0 since Sp is

SPD. Therefore we can simplify the classification rule to “classify to group 1 if

1

2
(z̄1 + z̄2) < aTx∗

and classify to group 2 otherwise.”

We remark that the rule is equivalent to the one given in Proposition 6.2.1,
replacing the means and covariance by their sample estimates and setting π1 = π2,
c2 = c1. A nice consequence of this Proposition is that it helps justify the rule based
on the multivariate Normal with equal covariances as an optimal linear decision
rule. Intuitively, it helps us understand that all we’re really doing is transforming
the original x into a scalar value y, and then checking whether it’s closer to ȳ1 or
ȳ2.

Example 6.4.2. Consider the Iris data and apply Fisher’s LDA to discriminate
between the species Versicolor and Virginica.

x1 =

5.94
2.77
4.26
1.33

 ; x2 =

6.59
2.97
5.55
2.03

 ;Sp =

0.34 0.09 0.24 0.05
0.09 0.10 0.08 0.04
0.24 0.08 0.26 0.06
0.05 0.04 0.06 0.06

The coefficients for the optimal linear combination are therefore

a = S−1
p (x1 − x2) =

3.56
5.58
−6.97
−12.38

 .

Figure 51 shows the projections of the observed data and the midpoint between
ȳ1 and ȳ2, i.e. the mean of the projections from each group. The plot suggests that
the linear rule is able to discriminate the two groups pretty well. This is confirmed
when we apply cross-validation, which delivers the following confusion matrix.

158

Versicolor Virginica
Versicolor 48 1
Virginica 2 49

##LDA for Iris data

data(iris)

x <- iris[iris$Species!='setosa',]

groups <- factor(x$Species)

x <- x[,1:4]

fisherlda <- function(x, groups, xnew) {
g1 <- unique(groups)[1]

g2 <- unique(groups)[2]

#

m1 <- colMeans(x[groups==g1,])

m2 <- colMeans(x[groups==g2,])

S1 <- cov(x[groups==g1,])

S2 <- cov(x[groups==g2,])

n1 <- sum(groups==g1)

n2 <- sum(groups==g2)

Sp <- ((n1-1)*S1 + (n2-1)*S2)/(n1+n2-2)

#

a <- solve(Sp) %*% matrix(m1-m2,ncol=1)

z <- as.matrix(x) %*% a

midpoint <- as.vector(.5*(m1 %*% a + m2 %*% a))

pred <- z > midpoint

pred <- ifelse(pred,as.character(g1),as.character(g2))

ans <- list(z=z,xpred=pred,midpoint=midpoint, a=a)

if (!missing(xnew)) {
xnewpred <- (as.matrix(xnew) %*% a) > midpoint

xnewpred <- ifelse(xnewpred,g1,g2)

ans$xnewpred <- xnewpred

} else {
ans$xnewpred <- NA

}
return(ans)

}

lda <- fisherlda(x,groups)

table(lda$xpred,groups)

groups

versicolor virginica

versicolor 48 1

virginica 2 49

159

pred.cv <- character(nrow(x))

for (i in 1:nrow(x)) {
fit <- fisherlda(x[-i,], groups=groups[-i], xnew=x[i,])

pred.cv[i] <- fit$xnewpred

}

table(pred.cv,groups)

groups

pred.cv versicolor virginica

1 48 1

2 2 49

op <- par(mfrow=c(3,1))

layout(matrix(c(1,2,2), nrow=3))

pch <- ifelse(as.numeric(groups)==1,4,4)

col <- ifelse(as.numeric(groups)==1,'black','blue')

plot(lda$z,rep(1,nrow(x)),col=col,pch=pch,xlab="a'x",

ylab='',cex.lab=1.25,ylim=c(.9,2),yaxt='n')

abline(v=lda$midpoint,lty=2,lwd=2)

X = iris[iris$Species != 'setosa',]

species=factor(X$Species)

X = X[, c(2,4)]

X = (as.matrix(X))

X <- jitter(X, amount=.05) # we slightly jitter the observations to get a nicer plot

X = scale(X, scale=FALSE)

par(mai=rep(0.,4))

plot(X, cex=.6, asp=1, xlim=c(-5.5, 3), ylim=c(-4, 2), pch=20,

axes=FALSE, col=c(1,4)[species])

a <- lda$a[c(2,4)]

projection_plot(X, groups=species, a, ind=NULL, lwdproj=.05,

density_scaling=1, shift_len=5)

lines(c(-1,1)*a[2], -c(-1,1)*a[1], lty=2, lwd=2)

par(op)

6.5 K-Nearest Neighbours Classification

Recall that Bayes’ classifier can be sometimes written in terms of posterior class
probabilities P(Y = y|X = x), see Remark 6.1.4. K-nearest neighbours (KNN) is a

160

Figure 51: Fisher’s Linear Discriminant Rule to classify versicolor vs. virginica.
Top subfigure: the vertical dashed line shows the midpoint between ȳ1, ȳ2. Bot-
tom subfigure: the corresponding projections of the original data (here we have
slightly cheated—to allow for a graphical representation—in that we have taken the
projection x 7→ aTx restricted to the variables 2 & 4.

161

simple but highly intuitive classification technique.

Algorithm 6.5.1 (K-nearest neighbours).
Let x be the predictor values for an individual we wish to classify, and

let c2, c1 be misclassification costs as in Proposition 6.1.3.

1. Find the K individuals closest to x, where distance can be defined in
any convenient manner.

2. Estimate P(Y = y | x) by P̂(Y = y | x), the proportion of individuals
in class y amongst the K nearest neighbours of x.

3. Classify as Y = 1 if
P̂(Y = 1 | x)

P̂(Y = 2 | x)
>
c2

c1

,

and as Y = 2 otherwise.

When c2 = c1, which is done frequently in practice, KNN simply follows a
majority voting rule. You walk outside of your house, ask your neighbours’ opinion,
and go with the majority.

The two key choices for KNN are how to measure distance and how to set K (i.e.
how many neighbours are needed). To set K, one can try different values, assess
their predictive power via cross-validation, and choose the best-performing K. As
a limitation, the approach uses a fixed K for all individuals, but the optimal K in
general can be different depending on x. In regions where all individuals belong to
one class a large K may be best, but in regions where individuals quickly transition
from class 1 to class 2 a smaller K may be preferable.

Figure 52 shows that classification regions for various values of K. Notice that
the classification region is more “rough” for smaller values of K, and becomes
“smoother” for larger values of K.

Example 6.5.1. We use KNN to classify the Iris data. The R function knn in
package class lets us specify a training set where to train the algorithm and an
independent test set. We use a leave-one-out cross-validation setting K = 1 neigh-
bours, which achieves 94/100 correct classifications.

#KNN for Iris data

library(class)

data(iris)

iris <- iris[iris$Species!='setosa',]

x <- as.matrix(iris[,1:4])

x <- scale(x)

names(x) <- names(iris)[1:4]

y <- as.character(iris$Species)

ypred <- rep(NA,length(y))

162

Figure 52: Classification regions for various values of K using K-nearest neighbour
classification.

163

for (i in 1:length(y)) ypred[i] <- knn(train=x[-i,], test=x[i,],

cl=y[-i], k=1)

table(y,ypred)

ypred

y 1 2

versicolor 48 2

virginica 4 46

op <- par(mfrow=c(1,2))

col <- ifelse(ypred==1,'black','blue')

pch <- ifelse(ypred==1,16,17)

plot(prcomp(iris[,1:4])$x[,1:2],col=col,pch=pch)

ypred <- rep(NA,length(y))

for (i in 1:length(y)) ypred[i] <- knn(train=x[-i,], test=x[i,],

cl=y[-i], k=18)

table(y,ypred)

ypred

y 1 2

versicolor 48 2

virginica 2 48

col <- ifelse(ypred==1,'black','blue')

pch <- ifelse(ypred==1,16,17)

plot(prcomp(iris[,1:4])$x[,1:2],col=col,pch=pch)

par(op)

We now repeat the analysis with a larger K = 18, finding 95/100 correct classifi-
cations (cross-validated). The PC plots of the classifications are given in Figure 53.

We assess the performance of the algorithm for K ranging from 1 to 50. For
convenience, we define a function knn.cv that returns the cross-validated correct
classification rate. Figure 54 shows the results.

knn.cv <- function(x,y,kmax=20) {
#KNN correct classification rate for several K (cross-valid)

cc <- rep(NA,kmax)

for (k in 1:kmax) {
ypred <- rep(NA,length(y))

for (i in 1:length(y)) ypred[i] <- knn(train=x[-i,], test=x[i,],

cl=y[-i], k=k)

tab <- table(y,ypred)

cc[k] <- sum(diag(tab))/length(y)

164

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●
●

●
●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●
●

●

●●

●

●

●

●

−2 −1 0 1 2

−
0.

5
0.

0
0.

5

PC1

P
C

2

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●
●●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●
●

●

●●

●

●

−2 −1 0 1 2

−
0.

5
0.

0
0.

5

PC1
P

C
2

Figure 53: Principal components for the Iris data showing KNN predictions for
K = 1 (left) and K = 18 (right).

}
return(cc)

}

set.seed(1) # for reproducibility

cc <- knn.cv(x,y,kmax=50)

plot(1:length(cc),cc,type='b', xlab='K', pch=20,

ylab='Correct classification rate (CV)',

cex.lab=1.25,cex.axis=1.25)

The correct classification rate stays quite stable for up to K = 35 neighbours,
but then starts to decrease. The optimal values are found at K = 16, 18.

6.5.1 Comparison of 1NN with the Bayes classifier

When studying the performance of classification rules, we often aim to compare
them to the Bayes classifier. Since the Bayes classifier has minimal error probability,
we use this risk as a benchmark to compare the performance of other, data-driven
classifiers against. First, let’s get an explicit expression for the risk of the Bayes
classifier when c1 = c2.

165

● ●

●

● ●

● ● ●

● ●

● ● ●

●

●

●

●

●

●

● ● ●

● ● ● ● ●

● ●

●

●

● ●

●

●

● ● ●

●

●

● ● ● ● ●

● ●

●

●

●

0 10 20 30 40 50

0.
90

0.
92

0.
94

0.
96

K

C
or

re
ct

 c
la

ss
ifi

ca
tio

n
ra

te
 (

C
V

)

Figure 54: Iris data. Correct classification rate assessed via cross-validation for KNN
and K = 1, . . . , 50.

Proposition 6.5.2. Suppose c1 = c2, and let

η(x) = P(Y = 1|X = x) =
f(x|Y = 1)π1

f(x|Y = 1)π1 + f(x|Y = 2)π2

,

so that the Bayes classifier g∗ : Rd → {1, 2} is given by g∗(x) = 1 if
η(x) > 1/2 and g∗(x) = 2 if η(x) ≤ 1/2. Then

P(g∗(X) 6= Y) = E[min{η(X), 1− η(X)}].

Proof. If x is such that η(x) > 1/2 then we have that

P(g∗(X) 6= Y |X = x) = P(Y = 2|X = x) = 1− η(x).

On the other hand, if x is such that η(x) ≤ 1/2 then we have that

P(g∗(X) 6= Y |X = x) = P(Y = 1|X = x) = η(x).

So, in either case,

P(g∗(X) 6= Y |X = x) = min{η(x), 1− η(x)},

and the result follows by taking expectation over x.

Under mild regularity conditions, we can derive the asymptotic risk of the 1NN
classifier and show that is has a similar form to that of the Bayes classifier. This will
allow us to compare the performance of the optimal Bayes classifer, which depends

166

on knowing the distribution of (X, Y), to the performance of the 1NN classifier,
which only requires data. Recall that when c1 = c2 the 1NN classification rule
predicts that the label of X is the same as the label of the closest data point to
it. This is a relatively crude data-driven classifier, but still has some good proper-
ties.

Proposition 6.5.3 (Non-examinable). Suppose c1 = c2. Given data
(X1, Y1), . . . , (Xn, Yn), let gn : Rp → {1, 2} be the 1NN classification rule,
so that gn(x) = YNN, where YNN is the label of the nearest Xi to x. Then
we have

P(gn(X) 6= Y)→ E[2η(X){1− η(X)}]

as n→∞, under mild regularity conditions.

Proof Sketch, non-examinable. We have

P(gn(X) 6= Y) = P(YNN 6= Y) = E
[
P(YNN 6= Y |X)

]
= E

[
η(X)P(YNN = 2) + {1− η(X)}P(YNN = 1)

]
= E

[
η(X){1− η(XNN)}+ {1− η(X)}η(XNN)

]
,

where we write XNN for the nearest value of Xi to X. As n→∞, we have XNN
p→ X,

as data points become more tightly packed. So, we also have η(XNN)
p→ η(X) and

hence
P(gn(X) 6= Y)→ E[2η(X){1− η(X)}].

We now compare these two expected costs. Write C∗ for the expected cost of the
Bayes classifier, and write C for the asymptotic expected cost of the 1NN classifier.
We will use the fact that, for any a, b ∈ R, we have ab = min(a, b)×max(a, b). Now

C/2 = E[η(X){1− η(X)}]
= E

[
min{η(X), 1− η(X)}max{η(X), 1− η(X)}

]
= E

[
min{η(X), 1− η(X)}

(
1−min{η(X), 1− η(X)}

)]
= E

[
min{η(X), 1− η(X)}

]
− E

[
min{η(X), 1− η(X)}2

]
= C∗ −

{
Var
(
Emin{η(X), 1− η(X)}

)
+
(
E
[
min{η(X), 1− η(X)}

])2
}

≤ C∗ − C2
∗ .

We therefore have that C ≤ 2C∗(1−C∗). In particular, when we have a lot of data,
the expected cost of the 1NN classifier is no worse than twice the optimal expected
cost, whatever the distribution of the data is.

Advantages of KNN

• Only requires distances, making it a very general algorithm,

• Can capture non-linear and non-monotonic patterns,

• Can detect interactions (complex combinations of variables associated with
one of the classes).

167

Disadvantages of KNN

• Requires choosing a distance metric,

• Sub-optimal to detect monotonic patterns,

• Requires a good choice for K.

6.6 Classification and Regression Trees (CART)

Classification trees provide a very different approach from the methods we have
seen so far. Following ideas similar to divisive clustering (which we will see later),
initially all individuals are in a single group, which forms the root of the tree. Then
that group is split into two nodes, typically by setting a threshold on one of the
predictors. Both the predictor and the threshold are usually chosen so that they
separate individuals from both classes as much as possible. The obtained nodes are
split iteratively, each time using any adequate variable and threshold, until nodes
are pure in the sense that they mostly contain observations from a single class.

Example 6.6.1. Figure 55, shows a tree classifying prostate cancer patients into
progressed / not progressed using multiple predictors (tumor grade, % cells in G2

phase, ploidysm, age etc.). Patients with tumor grade < 2.5 are assigned to the ‘not
progressed’ group. For the remaining patients, the tree checks if the value of G2 is
below 13.2, and then keeps checking variables until a node is reached.

Figure 56 (left panel) shows the age and % of G2 cells for grade 3-4 patients, as
well as the progression / no progression status. The right panel shows the CART
predictions, where we added lines defining the classification regions. We see that
the space is partitioned in a discontinuous fashion. We note that patients with
G2 < 13.2 are also classified according to the variable ploidy, which explains the
presence of mixed predictions in that region.

#CART for Stage C data

library(rpart)

progstat <- factor(stagec$pgstat, levels = 0:1, labels = c("No", "Prog"))

cfit <- rpart(progstat ~ age + eet + g2 + grade + gleason + ploidy,

data = stagec, method ='class')

y <- progstat

ypred <- predict(cfit)[,2]>0.5

op <- par(xpd=NA)

plot(cfit)

text(cfit)

par(op)

168

|
grade< 2.5

g2< 13.2

ploidy=ab

g2>=11.84

g2< 11

g2>=17.91

age>=62.5

No

No

No Prog

Prog

No Prog

Prog

Figure 55: Classification tree for Stage C data

169

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

10 20 30 40 50

50
55

60
65

70
75

Grades 3−4

G2

A
ge

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

10 20 30 40 50

50
55

60
65

70
75

Grades 3−4

G2
A

ge

Figure 56: Stage C data for Grade 3-4 patients and progression/no progression
status. Left: true status; Right: CART predictions.

op <- par(mfrow=c(1,2))

sel <- (stagec$grade>=2.5)

col <- ifelse(y=='Prog','black','blue')

pch <- ifelse(y=='Prog',16,17)

plot(stagec$g2[sel],stagec$age[sel],xlab='G2',ylab='Age',cex.lab=1,

col=col[sel],pch=pch[sel],main='Grades 3-4',cex.main=1, cex=.5)

#

sel <- (stagec$grade>=2.5)

col <- ifelse(ypred==1,'black','blue')

pch <- ifelse(ypred==1,16,17)

plot(stagec$g2[sel],stagec$age[sel],xlab='G2',ylab='Age',cex.lab=1,

col=col[sel],pch=pch[sel],main='Grades 3-4',cex.main=1, cex=.5)

abline(v=c(13.2,17.91),lwd=1)

segments(x0=17.91,x1=100,y0=62.5,lwd=1)

#plot(stagec$g2[!sel],stagec$age[!sel],xlab='G2',ylab='Age',
#cex.lab=1.25,col=col[!sel],pch=pch[!sel],main='Grades 1-2',cex.main=1.5)

par(op)

The main choices that one should consider carefully when building a classification
tree is how to select variables and set thresholds at each step, and how to define a
stop criterion. There are many strategies for each of these choices, which are too
extensive to cover here.

170

Example 6.6.2. We applied CART to Anderson’s Iris data, obtaining the tree de-
picted in Figure 57. The tree simply predicts species versicolor when Petal.Width

< 1.75, and virginica otherwise.

Figure 58 shows the true and predicted species. In this example CART seems
to perform a bit worse than other classifiers. It is interesting to note that in these
data there seems to be a smooth transition between groups as we move through the
predictor space. Smooth transitions can be hard to capture with hard-thresholding
rules.

#CART for Iris data

library(rpart)

data(iris)

iris <- iris[iris$Species!='setosa',]

x <- as.matrix(iris[,1:4])

names(x) <- names(iris)[1:4]

y <- factor(iris$Species, labels=0:1)

fit <- rpart(y ~ x,method='class')

op <- par(xpd=NA)

plot(fit)

text(fit)

par(op)

ypred <- predict(fit)[,2]>0.5

table(y,ypred)

ypred

y FALSE TRUE

0 49 1

1 5 45

op <- par(mfrow=c(1,2))

col <- ifelse(y==1,'black','blue')

pch <- ifelse(y==1,16,17)

plot(x[,c('Petal.Width','Petal.Length')],pch=pch,col=col, cex=.6)

#

#

col <- ifelse(ypred==1,'black','blue')

pch <- ifelse(ypred==1,16,17)

plot(x[,c('Petal.Width','Petal.Length')],pch=pch,col=col, cex=.6)

par(op)

171

|xPetal.Width< 1.75

0 1

Figure 57: Classification tree for Iris data

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

1.0 1.5 2.0 2.5

3
4

5
6

7

Petal.Width

P
et

al
.L

en
gt

h

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

1.0 1.5 2.0 2.5

3
4

5
6

7

Petal.Width

P
et

al
.L

en
gt

h

Figure 58: Iris data. Left: true species; Right: CART predictions.

172

Advantages of CART

• Easy to interpret,

• Allows continuous and discrete predictors,

• Captures complex non-linear and non-monotonic patterns.

Limitations

• Requires many parameters, and can be sensitive to their choices,

• Sub-optimal to detect monotonic patterns (loss of information due to catego-
rizing),

• Hard to detect interactions (e.g. divisions based on combinations of variables).

6.7 Logistic Regression Classification

Logistic regression is a model-based approach to classification that extends the ideas
of linear regression. Let Xi ∈ Rp be the vector of explanatory variables (predictors)
for individual i = 1, . . . , n, and Yi ∈ {0, 1} be the binary variable indicating the
group of individual i (the Yis are assumed to be conditionally independent given the
Xis). Notice here that the groups are now labeled 0, 1 and not 1, 2, and the cost of
misclassifications are denoted by c0, c1 > 0. This is to allow Yi|Xi to be modeled
as a Bernoulli random variable. Further, let pi , P(Yi = 1 | Xi) be the probability
of class 1, which is allowed to depend on Xi. As in linear regression, the idea is to
express the effect of Xi on the conditional expected value of Yi, pi , E [Yi|Xi] using
a linear combination of the elements in Xi. However, since pi ∈ (0, 1) we cannot
model pi as a linear function of Xi, as the latter can return values outside of (0, 1).
Instead, we define the log-odds

ηi = log

(
pi

1− pi

)
. (6.7.1)

The trick is that ηi can take any value within the real line, and hence it is
reasonable to model ηi as a linear function of Xi. That is,

ηi = β0 + XT
i β = β0 +

p∑
j=1

Xijβj,

where β ∈ Rp. This model is a particular instance of a generalized linear model
(GLM), with the logit link function (6.7.1).

Within this model the problem is reduced to estimating the parameters β0 and
β, which in turn produce an estimate for ηi and ultimately for pi. Solving for pi in
(6.7.1) gives

pi =
eβ0+XT

i β

1 + eβ0+XT
i β
. (6.7.2)

173

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

X

beta0=0, beta1=1
beta0=1, beta1=1
beta0=0, beta1=2

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

X

P
(Y

=
1

| X
)

beta0=0, beta1=1, beta2=1
beta0=1, beta1=1, beta2=1
beta0=0, beta1=2, beta2=1

Figure 59: P(Y = 1|X) as given by logistic regression. Left: ηi = β0 +β1X1i; Right:
ηi = β0 + β1X1i + β2X

2
1i

Figure 59 (left panel) shows pi as a function of a single predictor for various
values of β0 and β1. We obtain a sigmoid curve that is monotonic. As with linear
regression, the model is quite flexible in that we can include non-linear terms. For
instance, we can define X2 = X2

1 and include it as a new predictor in the equation.
Introducing such a quadratic term with β2 = 1 in Figure 59 we obtain the curves
shown in the right panel. The relationship between pi and Xi is no longer monotonic.

The main task is therefore to estimate β0 and β given a set of observed data.
Fortunately, there are efficient algorithms to find maximum likelihood estimates,
and asymptotic results (as n → ∞) indicating that these estimates are efficient
from a statistical point of view. We shall not discuss the algorithm here, but we will
note that it simply iterates weighted least squares steps, and that it is implemented
in the R function glm.

Algorithm 6.7.1 (Classification with logistic regression).

1. Obtain estimates β̂0,β̂,

2. For an individual with observed predictors x compute

P̂(Y = 1 | x) =
(

1 + e−β̂0−x
Tβ̂
)−1

,

3. Let c2, c1 be the misclassification costs in Proposition 6.1.3. Classify

174

as Y = 1 if

P̂(Y = 1 | x)

P̂(Y = 0 | x)
>
c0

c1

⇐⇒ xTβ̂ + β̂0 > log

(
c0

c1

)
,

and as Y = 0 otherwise.

The rule in Algorithm 6.7.1 is very similar to the optimal rule for multivariate
Normal data with equal covariances (Proposition 6.2.1), and by extension to Fisher’s
LDA. The decision is based on a linear combination of the predictors (namely, xTβ̂),
with an intercept term and a term incorporating the misclassification costs.

In spite of these similarities, the rules are not identical. First, the linear combi-
nation coefficients are now given by β̂, which is not a linear function of the training
data (as was the case for the multivariate Normal). Second, logistic regression allows
us to include quadratic or any other non-linear transformation of the predictor, and
we can even work with binary or categorical predictors (as we would do in linear
regression).

Example 6.7.1. We look again at the Iris data, where we start by fitting a logistic
regression model using function glm. This function also fits Normal linear regression
models and a wider class of models called Generalized Linear Models. We indicate
that we wish to fit a logistic regression model with the argument family.

data(iris)

iris <- iris[iris$Species!='setosa',]

x <- as.matrix(iris[,1:4])

y <- ifelse(iris$Species=='virginica',1,0)

glm1 <- glm(y ~ x[,1]+x[,2]+x[,3]+x[,4], family=binomial(link='logit'))

summary(glm1)

##

Call:

glm(formula = y ~ x[, 1] + x[, 2] + x[, 3] + x[, 4],

family = binomial(link = "logit"))

##

Deviance Residuals:

Min 1Q Median 3Q Max

-2.01105 -0.00541 -0.00001 0.00677 1.78065

##

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -42.638 25.707 -1.659 0.0972 .

x[, 1] -2.465 2.394 -1.030 0.3032

x[, 2] -6.681 4.480 -1.491 0.1359

x[, 3] 9.429 4.737 1.991 0.0465 *

x[, 4] 18.286 9.743 1.877 0.0605 .

175

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

(Dispersion parameter for binomial family taken to be 1)

##

Null deviance: 138.629 on 99 degrees of freedom

Residual deviance: 11.899 on 95 degrees of freedom

AIC: 21.899

##

Number of Fisher Scoring iterations: 10

The glm output reveals that we may not need the four predictors (which makes
sense, as we know they are highly correlated with each other). We decide to drop
the predictor with largest p-value and re-fit the model.

glm2 <- glm(y ~ x[,2]+x[,3]+x[,4], family=binomial(link='logit'))

summary(glm2)

##

Call:

glm(formula = y ~ x[, 2] + x[, 3] + x[, 4], family = binomial(link = "logit"))

##

Deviance Residuals:

Min 1Q Median 3Q Max

-1.75795 -0.00412 0.00000 0.00290 1.92193

##

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -50.527 23.995 -2.106 0.0352 *

x[, 2] -8.376 4.761 -1.759 0.0785 .

x[, 3] 7.875 3.841 2.050 0.0403 *

x[, 4] 21.430 10.707 2.001 0.0453 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

(Dispersion parameter for binomial family taken to be 1)

##

Null deviance: 138.629 on 99 degrees of freedom

Residual deviance: 13.266 on 96 degrees of freedom

AIC: 21.266

##

Number of Fisher Scoring iterations: 10

We will keep the three remaining predictors, as all of them have coefficients
minimally different from 0 (although not all of them are strictly significant at the
0.05 level).

176

Based on this output, and assuming equal misclassification costs c2 = c1, we
compute the probability of each class and assign each individual to the most likely
class.

b0 <- coef(glm2)[1]

b1 <- matrix(coef(glm2)[-1],ncol=1)

p <- 1/(1+exp(-b0 -x[,2:4] %*% b1))

ypred <- p>0.5

table(y,ypred)

ypred

y FALSE TRUE

0 48 2

1 1 49

op <- par(mfrow=c(1,2))

col <- ifelse(ypred==1,'black','blue')

pch <- ifelse(ypred==1,16,17)

plot(prcomp(x)$x[,1:2],pch=pch,col=col, cex=.7)

#

col <- ifelse(y==1,'black','blue')

pch <- ifelse(y==1,16,17)

plot(prcomp(x)$x[,1:2],pch=pch,col=col, cex=.7)

par(op)

The confusion matrix in the observed data is similar to those for the multivariate
Normal and Fisher’s LDA rules. As discussed before, it would be better to obtain
the confusion matrix with cross-validation, but we do not do that here. Figure 60
displays the first two principal components and the predicted classes.

Advantages of logistic regression

• Can detect variables with no predictive power (βj = 0),

• Can combine discrete and continuous predictors, and their non-linear trans-
formations,

• No distributional assumptions on predictors X.

177

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

−2 −1 0 1 2

−
0.

5
0.

0
0.

5

PC1

P
C

2

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

−2 −1 0 1 2

−
0.

5
0.

0
0.

5

PC1

P
C

2

Figure 60: Principal component plot for Iris data (Virginica/Versicolor). Left: lo-
gistic regression prediction; Right: true species

178

7 Clustering (Unsupervised Learning)

Clustering algorithms try to detect groups of similar individuals or similar variables,
the exact meaning of similarity depending on the application. This task is performed
in an unsupervised manner. We are not told which groups exist in the data (if any),
rather we want to explore the existence of such groups within the available data.

The output of clustering analysis can help discover underlying structure in the
data. For instance, we might find that colon cancer patients are sub-divided into two
(previously unknown) groups. Because these groups have different characteristics,
they might benefit from different therapies, have different prognosis etc. Another
use of clustering is to simplify the interpretation of the data. For instance, a com-
pany may record the characteristics of its customers to design effective marketing
strategies. Although every customer is different, it would be useful to determine the
main customer stereotypes and devise a different strategy for each stereotype. Now
consider an example where the goal is to cluster variables. Suppose that a certain
supermarket records the amount spent on each item in the basket (so that we have
1 variable per item). As there are many items to be considered, it may be simpler to
cluster variables into groups such as fresh food, frozen food, canned food, electronics
etc.

From these examples it should be clear that clustering is a technique applicable
to virtually any data set. In fact, it has received attention in many fields, including
statistics, computer science, machine learning, engineering, bioinformatics etc. For
this reason, there is a wide variety of available clustering algorithms, which are
impossible to cover in a few lectures. We shall focus on the main philosophical
issues and see some popular clustering algorithms that can serve as the basis for
more sophisticated strategies.

The fundamental issues in clustering are defining a measure of similarity (or
distance), coming up with a strategy to group objects, and assessing the reliability
and robustness of the obtained clusters.

7.1 Measuring distances

The first step in any clustering analysis is to define a sensible measure of distance
or similarity between the items we wish to group (individuals or variables). This
choice depends on the specific application, and should be discussed with experts
with subject-matter knowledge. A common strategy is to consider several metrics,
obtain results for each and evaluate their relative merits. This said, we now discuss
some default distance metrics that often prove useful in applications.

We shall distinguish metrics that measure similarity between individuals and
those that that measure similarity between variables. LetX be our data matrix, with
rows corresponding to individuals i = 1, . . . , n and columns to variables j = 1, . . . , p.
We denote by xi. the ith row, x.j the jth column and xij the (i, j) element in X.

When data are real-valued, some common distances between individuals xi. and
xk. are:

Euclidean:
√∑p

j=1(xij − xkj)2

179

Manhattan:
∑p

j=1 |xij − xkj|

Minkowski:
(∑p

j=1 |xij − xkj|m
)1/m

Mahalanobis:
√

(xi. − xk.)TS−1(xi. − xk.), where S = Cov(xi.) = Cov(xk.)

Correlation:
√

1
2
(1− ρ(xi.,xk.)), where ρ(·) is some correlation coefficient (Pear-

son, Spearman, Kendall, etc.).

Absolute correlation:
√

1− |ρ(xi.,xk.)|

Clearly, the Euclidean and Manhattan distances are particular cases of the Minkowski
distance for m = 2 and m = 1, respectively. The Mahalanobis distance is attractive
in that it incorporates correlations between variables. For instance, if two variables
had correlation close to 1, they would receive much larger weight (double, roughly)
in the Euclidean or Manhattan distances than in the Mahalanobis distance. A dif-
ficulty is that it requires knowing S, which should be the within-groups covariance,
but the groups are of course not known. A way to bypass this difficulty is to per-
form a first clustering algorithm with Minkowski distances to define groups, then
use these groups to estimate S, and finally repeat the clustering with Mahalanobis
distances.

While Minkowski and Mahalanobis distances can also be used to measure similar-
ity between variables, in practice it is more common to use correlation or association-
based metrics.

When variables are categorical, similarities are usually based on contingency
tables. Suppose we have the following table comparing rows (or columns) i and k

xi.
0 1

xk. 0 a b
1 c d

The following metrics are common choices:

Proportion of concordance: sik = a+d
a+b+c+d

Tanimoto: sik = d
b+c+d

Proportion of 1-1 matches: sik = d
a+b+c+d

Chi-square test statistic for independence

The first three measure similarity, while the latter measures dissimilarity.
So far we have seen several metrics to measure either similarity or distance.

Obviously, we can always convert a measure of similarity to one of dissimilarity
(and vice versa). For instance we could define dik = 1− sik/maxj,lsjl or dik = 1/sik
(assuming that sik > 0). However, there is no guarantee that these transformations
define a proper distance in the mathematical sense. Clearly both definitions of dik

180

satisfy dik > 0 and symmetry (if sik is symmetric), hence the issue is that the
triangular inequality may not hold. Gower demonstrated that when the matrix
with similarities is non-negative definite and has diagonal entries sii = 1 for all
i = 1, . . . , n the choice dik =

√
2(1− sik) is a proper distance.

In practice, clustering applications often use dissimilarity metrics that do not
possess the properties of a distance and obtain reasonable answers. However, think-
ing about distances adds some elegance, as then the objects being clustered can be
thought of as points in some metric space.

7.2 Hierarchical clustering

Hierarchical clustering is one of the most popular choices, and includes a family of
algorithms. There are two general approaches to hierarchical clustering:

1. Agglomerative (or bottom-up) methods. At the first iteration each object is
considered a separate cluster. Then clusters are successively merged until only
1 cluster containing all objects is left.

2. Divisive (or top-down) methods. At the first iteration all objects are included
in a single cluster. Then clusters are successively divided until each cluster
contains a single object or satisfies some ‘purity’ criteria (i.e. all observations
in the cluster are very similar to each other).

Here we focus on agglomerative hierarchical clustering, which seems to be most
popular. The general algorithm is as follows.

Algorithm 7.2.1 (Agglomerative hierarchical clustering).
Let o1, . . . , on be the objects to be clustered. Denote by

C
(0)
1 , {o1}, C(0)

2 , {o2}, . . . , C(0)
n , {on},

the initial clusters. Set D(0) to be the distance matrix between the initial
clusters {C(0)

i }i.
There are n− 1 steps in the algorithm: For k = 1, 2, . . . , n− 1,

(a) Find the two closest clusters, i.e. find i 6= j such that (D(k−1))ij is
minimal, and denote this minimal distance by d(k), i.e.

d(k) , min
i 6=j

D
(k−1)
ij ,

(b) Merge the two closest clusters C
(k−1)
i , C

(k−1)
j together. Thus redefine

the new clusters C
(k)
1 , . . . , C

(k)
n−k, and compute the new distance matrix

D(k) containing the pairwise distances between these new clusters.

Steps (b) in the algorithm requires computing distances between clusters, which
requires us to choose a distance between clusters that have more than 1 element.

181

The method to compute distances between clusters is called the linkage method.
Four common choices are:

Single linkage the distance between two clusters is defined as the distance between
the two closest elements in those clusters. Single linkage is unaffected by
monotonic changes in the input distances. Because it links nearest neighbours,
it can produce elongated clusters where some elements are very far apart from
each other.

Complete linkage the distance between two clusters is defined as the distance
between the two farthest elements in those clusters. Complete linkage is also
unaffected by monotonic changes in the input distances. It enforces clusters
where no two elements are very different from each other.

Average linkage the distance between two clusters is defined as the average of
all pairwise distances between those clusters. Average linkage is affected by
any non-linear change in the input distances, e.g. working with log-distances
produces a different result. It enforces clusters where most elements are nearby,
and penalizes clusters where two elements are very far from each other.

Ward linkage the distance between two clusters is given by the increase in within-
cluster sum-of-squares after merging the clusters. That is, the two clusters to
be merged are those minimizing the increase in sum-of-squares. Ward linkage
is affected by non-linear changes in the input distances, and prefers spherical
clusters.

Figure 61 shows an example with two clusters, both with 3 elements. Single
linkage finds the distance between the two closest elements, complete linkage between
the two furthest elements, and average linkage averages all pairwise distances.

The result of hierarchical clustering is typically visualized using a dendrogram
(from Greek dendron ‘tree’ and gramma ‘drawing’). The dendrogram is simply
a tree whose leaves correspond to individual elements and whose branches indicate
which elements/clusters were merged at each step. The y-axis indicates the distance
between the pair of clusters merged at each stage, which gives a feeling of the degree
of separation between these clusters. Notice that the order of the leaves does not
necessarily correspond to the order of the labeling of the data. The order of the
leaves in R’s algorithm is to put the next cluster split on the right. This is the rule
that we will use in the module, and that you should use for any examined part of
this module.

Figure 61 (bottom right) shows the dendrogram for the data in the same Figure
(other subplots), using complete linkage. At the first step elements 3 and 4 were
merged, and subsequently at the second step elements 2 and 6 were merged. The
third step combined element 5 with cluster {3, 4}, afterwards element 1 was com-
bined with cluster {2, 6}, and finally all elements were combined in a single cluster).
The height of the ‘jumps’ in the dendrogram give an indication of the number of
clusters that might be adequate to describe the data. Big jumps indicate clusters
that lie far apart and should not be combined. In our example, the dendrogram
suggests the existence of two main clusters, agreeing with the visual impression in
Figure 61.

182

●

●

●

1

2

3

4

5

6

●

●

●

1

2

3

4

5

6

●

●

●

1

2

3

4

5

6

5 3 4 1 2 6

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

H
ei

gh
t

Figure 61: Linkage methods to measure distance between two clusters. Top left:
single linkage; top right: complete linkage; Bottom left: average linkage; Bottom
right: dendrogram of the 6 data points using complete linkage.

183

●

●

●
●

● ●
●

●

●

●●
● ●

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Figure 62: Circle data.

Example 7.2.1. Suppose that we wish to cluster the data shown in Figure 62.
We consider using single, complete and average linkage. We start by running the
hierarchical clustering algorithm with each linkage method (function hclust in R)
and plotting the dendrogram in each case. The dendrograms for the three linkages
are provided in the left panels of Figure 63. When using single linkage (top) the
dendrogram suggests 2 main clusters, which are indicated in the corresponding top
right panel. Complete and average linkage (middle and bottom, respectively) suggest
3 main clusters, which are indicated in the corresponding right panels.

From the perspective of single linkage, it is fine to have a long chain of concate-
nated elements, even if some elements in the same cluster end up being quite far
from each other. In contrast, both complete and average linkage penalize having
two elements that are far away from each other but are assigned to the same cluster.
From these results it is hard to state which linkage method is more appropriate in
this particular case. The final choice would typically depend on what the clustering
results will be used for.

Example 7.2.2. We now consider hierarchical clustering the Iris data. Figure 64
(bottom subfigure) shows a principal components plot where each flower has been
coloured according to its species. We applied hierarchical clustering (R code below)
with Euclidean distance and complete linkage, obtaining the dendrogram shown
in Figure 64 (top left). Although the dendrogram suggests 2 clusters we divide
the sample into 3 clusters, shown in the top right panel. The cluster on the left
corresponds to species 1, but the two clusters on the right do not exactly correspond

184

●

● ●

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

● ●

●

● ●

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

● ●

●

● ●

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

13 11 12 6 7 8 9 10 5 4 3 1 2

0.
1

0.
2

0.
3

0.
4

0.
5

hclust (*, "single")

H
ei

gh
t

9 10 7 8 13 11 12 5 6 1 2 3 4

0.
0

0.
5

1.
0

1.
5

2.
0

hclust (*, "complete")

H
ei

gh
t

9 10 7 8 1 2 3 4 13 11 12 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

H
ei

gh
t

Figure 63: Hierarchical clustering with Euclidean distance. Top: single linkage,
Middle: complete linkage, Bottom: average linkage.

185

to the two remaining species.

Based on the 3 cluster solution, we compute the three within groups covariance
matrices and combined them into the pooled covariance matrix Sp. We then use
Sp to define Mahalanobis distances and apply hierarchical clustering with complete
linkage. This is the same algorithm as before, simply changing the definition of
distance. The result is shown in Figure 64, bottom panels. The dendrogram now
suggests two very clearly separated clusters, one of which is further sub-divided into
two clusters. These 3 clusters better match the three species of flowers.

data(iris)

pc <- prcomp(iris[,1:4])$x

#col <- as.numeric(iris$Species)
#plot(pc[,1],pc[,2],col=col,pch=col,xlab='PC1',ylab='PC2')

h1 <- hclust(dist(iris[,1:4]), method='complete')

clus <- cutree(h1, k=3)

#Compute pooled within-groups covariance

S1 <- cov(iris[clus==1,1:4])

S2 <- cov(iris[clus==2,1:4])

S3 <- cov(iris[clus==3,1:4])

n1 <- sum(clus==1); n2 <- sum(clus==2); n3 <- sum(clus==3)

Sp <- ((n1-1)*S1 + (n2-1)*S2 + (n3-1)*S3)/(n1+n2+n3-3)

#The code below computes pairwise Mahalanobis distances

require(ICSNP)

pairdiff <- pair.diff(as.matrix(iris[,1:4]))

d <- mahalanobis(pairdiff,center=rep(0,ncol(pairdiff)),cov=Sp,

inverted=FALSE)

dmat <- matrix(0,nrow=nrow(iris),ncol=nrow(iris))

dmat[lower.tri(dmat)] <- d; dmat <- dmat + t(dmat)

h2 <- hclust(as.dist(dmat), method='complete')

clus2 <- cutree(h2, k=3)

op <- par(mfrow=c(3,2), mai=c(.05,.33,.3, .1), cex.main=1)

layout(matrix(c(1,3,5, 2,4,5), nrow=3, ncol=2))

plot(h1, main='Euclidean distance, Complete Linkage',xlab='',hang=-1,

cex=.2)

abline(h=3.8, lty=2)

#

plot(h2,main='Mahalanobis distance, Complete Linkage', xlab='',hang=-1,

cex=.2)

abline(h=60, lty=2)

#

par(mai=c(.1,.1,.05, .1))

186

#

plot(pc[,1],pc[,2],col=clus,pch=clus, xaxt='n', yaxt='n')

#

#plot(pc[,1],pc[,2],col=clus2,pch=clus2,xlab='PC1',ylab='PC2')

plot(pc[,1],pc[,2],col=clus2, pch=clus2, xaxt='n', yaxt='n')

#

par(mai=c(.0,.1,.5, .1))

col <- as.numeric(iris$Species)

plot(pc[,1],pc[,2],col=col,pch=col,xlab='PC1',ylab='PC2',

main='True Groups (Species)', xaxt='n', yaxt='n', line=0.3)

par(op)

Advantages of hierarchical clustering

• Dendrogram gives an idea of the number of clusters,

• Can cluster both individuals and variables,

• Only required inputs are distances (or similarities).

Limitations of hierarchical clustering

• It can be very sensitive to arbitrary choices (linkage method),

• Will not re-allocate elements assigned to the wrong cluster in early iterations,

• It has no interpretation in terms of an underlying probability model.

7.3 K-Means Clustering

Another popular clustering strategy is the so-called K-means clustering. The ba-
sic idea is to consider a certain number K of clusters, which must be specified in
advance, and allocate each observation to the cluster with nearest centroid (mean).
Here distance is usually taken to be the Euclidean distance (either using standard-
ized or non-standardized observations), which implies that K-means tries to find
spherical clusters. Of course, nothing stops us from computing other distances, e.g.
Mahalanobis distances which tries to find elliptical clusters.

Algorithm 7.3.1 (K-means clustering with Euclidean distance).

1. Partition the n objects into K initial clusters

2. Compute the centroid (mean) of each cluster

3. Re-allocate each point to the cluster with closest centroid (in Eu-
clidean distance).

187

10
8

13
1

10
3

12
6

13
0

11
9

10
6

12
3

11
8

13
2

11
0

13
6

14
1

14
5

12
5

12
1

14
4

10
1

13
7

14
9

11
6

11
1

14
8

11
3

14
0

14
2

14
6

10
9

10
4

11
7

13
8

10
5

12
9

13
3

15
0 71 12
8

13
9

11
5

12
2

11
4

10
2

14
3

13
5

11
2

14
7

12
4

12
7 73 84 13
4

12
0 69 88 66 76 77 55 59 78 87 51 53 86 52 57 75 98 74 79 64 92 61 99 58 94 10
7 67 85 56 91 62 72 68 83 93 95 10
0 89 96 97 63 65 80 60 54 90 70 81 82 42 30 31 26 10 35 13 2 46 36 5 38 28 29 41 1 18 50 8 40 23 7 43 3 4 48 14 9 39 17 33 34 15 16 6 19 21 32 37 11 49 45 47 20 22 44 24 27 12 25

0
2

4
6

Euclidean distance, Complete Linkage

hclust (*, "complete")

42 16 34 15 17 12 25 33 45 5 20 38 47 3 7 43 48 31 4 30 14 9 39 10 13 26 35 36 2 46 23 22 18 41 44 24 27 32 37 21 50 8 40 29 1 28 19 6 11 49 11
9

13
1

10
6

12
3

11
8

13
2

10
8

12
6

13
0

13
6

14
2

14
6

11
2

12
9

13
3

14
7

12
4

12
7

11
5

11
4

12
2

10
2

14
3

12
5

10
5

14
4

10
1

13
7

14
9

11
1

14
8

11
6

14
1

14
5

11
0

10
3

12
1

11
3

14
0

13
5

10
9 73 12
0

10
7 60 67 85 15
0 71 12
8

13
9

10
4

11
7

13
8 84 13
4 86 52 57 62 79 56 91 68 74 64 92 95 10
0 96 89 97 65 99 61 58 94 54 90 80 83 93 70 81 82 63 69 88 72 75 98 55 78 59 77 66 76 51 53 87

0
50

10
0

15
0

20
0

Mahalanobis distance, Complete Linkage

hclust (*, "complete")

H
ei

gh
t

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

pc[, 1]

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

pc[, 1]

pc
[,

2]

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

True Groups (Species)

P
C

2

Figure 64: Hierarchical clustering of Anderson’s Iris dataset using Euclidean distance
(top left) and Mahalanobis distance (top right). The cutoff level to obtain 3 clusters
is denoted by a horizontal dashed line. The corresponding clusters are in the middle
plots (middle left: Euclidean distance; middle right: Mahalanobis distance). These
are plots of the first 2 PC scores, where colour (or shape) indicate the inferred
clusters. Bottom: PC plot (PC scores 1 vs. 2) with observations coloured according
to the species indicated in the dataset (true underlying groups).

188

Steps 2-3 are repeated until no more objects are re-allocated.

Remark 7.3.1 (Variants of K-means).

1. One could use a distance that is not the Euclidean distance. For
instance, in Example 7.3.2, a clustering is performed using the Ma-
halanobis distance.

2. Instead of computing the centroid in step 2., one could choose the
most central observation as the representative of each cluster. One
could define the most central object as

i , arg min
i∈Ck

∑
j∈Ck

d2
ij.

This is a generalization of K-means. Another variant would be to
take the medoids

i , arg min
i∈Ck

∑
j∈Ck

dij,

as the cluster center. This last version of the algorithm is called K-
medoids clustering. Note that the last two equations do not require
that the objects lie in a Euclidean space, since only the pairwise
distances dij are needed to run the algorithm. Notice however that
the computational cost of (a naive implementation of) the K-medoids
clustering is O(n2

k) in step 2., instead of O(nk) for step 2. of K-means,
where nK , |Ck| is the cardinality of cluster Ck.

Nice animations and graphics showing the iterations of the K-means algorithm can
be found online (e.g. https://en.wikipedia.org/wiki/K-means_clustering),
and some applications are given in https://web.stanford.edu/~hastie/ElemStatLearn/

printings/ESLII_print12.pdf, sections 14.3.8. and 14.3.9. An important input
to the K-means algorithm is the choice of K. Various heuristic methods exist; we
only give one here, sometimes known as the elbow rule: for each K = 1, . . . , Kmax,
compute the within cluster dissimilarities

WK =
K∑
k=1

∑
i,j∈Ck

d2(xi, xj),

where C1, . . . , CK are the clusters obtained by K-means. Then one plots K versus
WK , and looks for an elbow in the figure. The number of clusters suggested by this
method is at the elbow of the figure, that is K∗ such that {WK+1−WK |K < K∗} �
{WK+1 −WK |K ≥ K∗}. This is illustrated in Figure 65.

Example 7.3.2. We apply K-means clustering to Anderson’s Iris data, after stan-
dardizing the four variables to mean 0 and variance 1. Figure 66 (left) shows the
result of the standard K-means algorithm based on Euclidean distances. As we ob-
served with hierarchical clustering, the clusters do not perfectly correspond to the

189

https://en.wikipedia.org/wiki/K-means_clustering
https://web.stanford.edu/~hastie/ElemStatLearn/printings/ESLII_print12.pdf
https://web.stanford.edu/~hastie/ElemStatLearn/printings/ESLII_print12.pdf

●

●

●
● ●

1 2 3 4 5 6

0
2

4
6

8
10

K

W
_k

Figure 65: Plot of within cluster dissimilarities for different number of clusters. The
elbow criterion tells us to choose K = 3 clusters.

species. K-means encourages spherical clusters, which result in the points to the
right of the plot being divided into two roughly spherical clusters.

Next we used the three obtained clusters to compute the within-groups covari-
ances, which were then combined into a pooled covariance matrix S. This matrix
was used to compute Mahalanobis distances. Because the option with Mahalanobis
distances is not implemented in R, we use the fact that Mahalanobis distances
xTS−1x are equivalent to Euclidean distances zTz for z = S−1/2x (see R code be-
low). Figure 66 (right) shows the K-means result with Mahalanobis distances, which
resembles the three species quite closely.

data(iris)

pc <- prcomp(iris[,1:4])$x

z <- scale(iris[,1:4])

set.seed(1)

op <- par(mfrow=c(1,2), mai=c(.1,.1,.1,.1))

ans <- kmeans(z, centers=3)

clus <- ans$cluster

plot(pc[,1],pc[,2],col=clus,pch=clus,xlab='PC1',ylab='PC2', xaxt='n',

yaxt='n')

#

S1 <- cov(z[clus==1,]); S2 <- cov(z[clus==2,]); S3 <- cov(z[clus==3,])

n1 <- sum(clus==1); n2 <- sum(clus==2); n3 <- sum(clus==3)

Sp <- ((n1-1)*S1 + (n2-1)*S2 + (n3-1)*S3)/(n1+n2+n3-3)

sqrtSinv <- eigen(Sp)$vectors %*% diag(1/sqrt(eigen(Sp)$values))

190

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

P
C

2

Figure 66: K-means clustering of Anderson’s Iris data (Left: Euclidean distance;
Right: Mahalanobis Distance). Notice that the colour coding of the clusters changes
(a clustering algorithm cannot distinguish between labellings).

z2 <- z %*% t(sqrtSinv)

#

clus2 <- kmeans(z2, centers=3)$cluster

plot(pc[,1],pc[,2],col=clus2,pch=clus2,xlab='PC1',ylab='PC2',

xaxt='n', yaxt='n')

par(op)

Advantages of K-means clustering

• Flexibility: it re-allocates observations at each iteration,

• No need to specify linkage,

• Has connections with clustering based on statistical models (mixture of mul-
tivariate Normal distributions).

Limitations of K-means clustering

• Need to fix the number of clusters in advance,

• Computing centroids requires providing the co-ordinates—distance matrix alone
is not enough.

191

7.4 Other Clustering Algorithms

There are many other algorithms beyond hierarchical and K-means clustering. It is
beyond the scope of this course to see these more advanced methods, but here we
briefly mention a few of them so that you are familiar with their existence.

7.4.1 Combination of hierarchical and K-means clustering

One option is to combine hierarchical and K-means clustering, for instance perform-
ing an initial hierarchical clustering followed by K-means.

Advantages of hybrid hierarchical/K-means clustering

• Hierarchical clustering suggests the number of clusters,

• K-means flexibly re-allocates individuals,

• Less sensitive to linkage method.

7.4.2 Model-based clustering

Another popular approach is to perform probabilistic clustering. Rather than sim-
ply assigning individuals to clusters, here we also report the probability that each
observation belongs to a given cluster. The approach is based in identifying each
cluster with a different probability distribution. For instance, let Xi ∈ Rp be the
random variables for individual i = 1, . . . , n. We introduce a fictitious variable Zi
that indicates the cluster that individual i belongs to. This variable is usually called
a latent variable, as we never get to observe it, it is simply a trick to be able to write
a probability model. For instance, let us assume that data in cluster k = 1, . . . , K
follow a multivariate Normal, then the model is formulated as

Xi | Zi = k ∼ Np(µk,Σk)

P(Zi = k) = πk.

The goal is to determine P(Zi = k | Xi), the cluster probabilities for individidual
i. With these in hand we can assign each individual to the most probable clus-
ter. Importantly, the probabilities also tell us how certain we are of the cluster
assignments.

By the law of total probability the density of Xi is

f(Xi) =
K∑
k=1

πkN(Xi;µk,Σk). (7.4.1)

Therefore we can define the likelihood f(x1, . . . ,xn) =
∏n

i=1 f(xi) as usual, which
we can maximize with respect to (πk,µk,Σk), k = 1, . . . , K to obtain maximum like-
lihood estimates (or posterior distributions, in a Bayesian setup). Implementations

192

of this method can be found in R packages such as mclust, EMCluster or bayesm.
By Bayes’ theorem, the cluster probabilities are given by

P(Zi = k | Xi,µ1, . . . ,µK ,Σ1, . . . ,ΣK ,π) =
N(Xi;µk,Σk)πk∑K
j=1N(Xi;µj,Σj)πj

, (7.4.2)

which can be estimated for instance by plugging in the MLEs for (π̂k, µ̂k, Σ̂k), k =
1, . . . , K.

In fact, the K-means algorithm with Euclidean distance is strongly connected
with model (7.4.1) when Σk are spherical matrices, and K-means with Mahalanobis
distances to the case with general Σk.

Advantages of model-based clustering

• Cluster probabilities measure uncertainty in cluster allocations

• The number of clusters K is a parameter in the model, and can be selected
with standard model choice criteria (AIC, BIC etc.)

• No need to specify linkage

• Model automatically defines the relevant measure of distance

• Model assumptions can be checked

We briefly review two popular model choice criteria, AIC and BIC, which are
useful when comparing models with different number of parameters. We cannot
compare such models using only the likelihood evaluated at the maximum likelihood
estimate for the parameters, because the likelihood always favours the more complex
model. Instead, we need to find a trade-off between the fit to the data (measured by
the likelihood) and model complexity. Let x1, . . . ,xn be n independent observations
from the density f(x | θ), where θ are the parameters of the probability distribution.
Let q = dim(θ) be the number of parameters in the model and θ̂ their maximum
likelihood estimate, that is

θ̂ = argmaxθ

n∏
i=1

f(xi | θ) = argmaxθL(θ).

Definition 7.4.1. Akaike’s information criterion is defined as

AIC = −2 logL(θ̂) + 2q.

Similary, the Bayesian information criterion is

BIC = −2 logL(θ̂) + q log n,

where q is the number of parameters and n the sample size.

193

The first term in both criteria is proportional to minus the log-likelihood evalu-
ated at the MLE. Small values correspond to high likelihood, which indicates a good
fit. The second term is a penalization for the number of parameters, so that complex
models with large q are penalized. Small AIC or BIC values indicate models that
achieve a reasonable fit with relatively few parameters, and hence are useful when
comparing models of different dimensionality.

Example 7.4.2. Suppose we wish to compare the two following linear regression
models

M1 : Yi = β0 + β1X1i + Ei

M2 : Yi = β0 + β1X1i + β2X2i + Ei,

where Ei ∼ N(0, σ2) are independent for i = 1, . . . , n. Because model 1 is a particu-
lar case of model 2, the likelihood under model 2 evaluated at the MLE will always
be larger than that for model 1.

Define by θ̂(1) = (β̂0, β̂1, σ̂) the MLE under model 1 and by θ̂(2) = (β̂0, β̂1, β̂2, σ̂)
that under model 2. The respective AIC values are

AIC1 = −2 logL(θ̂(1)) + 6

AIC2 = −2 logL(θ̂(2)) + 8,

so that we choose model 1 when logL(θ̂(2)) − logL(θ̂(1)) < 1. Similary, using BIC
we choose model 1 when logL(θ̂(2))− logL(θ̂(1)) < 1

2
log n.

Both for AIC and BIC, we only choose model 2 when the difference in log-
likelihoods is deemed large enough.

Example 7.4.3. Consider now the case of model-based clustering, where each clus-
ter is associated with a multivariate Normal component. The likelihood for a model
with K clusters is

LK =
n∏
i=1

K∑
k=1

πkN(xi;µk,Σk),

where xi ∈ Rp. Let L̂K be the likelihood evaluated at the MLE (µ̂k, Σ̂k, π̂k) for
k = 1, . . . , K. The number of parameters is qK = K(p+ p(p+ 1)/2) +K − 1, where
we consider that there are only K − 1 independent πk’s (since πK = 1−

∑K−1
k=1 πk).

Therefore the AIC and BIC for a model with K clusters are

AICK = −2 log(L̂K) + 2qK

BICK = −2 log(L̂K) + qK log(n). (7.4.3)

Fortunately, both finding MLEs and computing the BICs are implemented in
the R package mclust.

194

●

●
●

●

●

1 2 3 4 5

−
80

0
−

75
0

−
70

0
−

65
0

−
60

0

Index

bi
c1

Figure 67: BIC values for iris dataset.

library(mclust)

library(mvtnorm)

data(iris)

bic1 <- mclustBIC(iris[,1:4],G=1:5,modelNames='VVV', verbose=F)

mclust1 <- mclustModel(iris[,1:4],BICvalues=bic1)

pro <- mclust1parpro

m <- mclust1parmean

v <- mclust1parvariance$sigma

clusprob <- mclust1$z

clus <- ifelse(clusprob[,1]>.5,1,2)

op <- par(cex.axis=.75)

plot.default(bic1, type='b', col=1)

par(op)

Let us see what results we get on the Iris dataset. Figure 67 shows the negative
of the BIC for K = 1, . . . , 5 clusters. The best number of clusters according to this
criterion is K = 2, followed closeby by K = 3. Clearly, K = 1 provides a very bad
fit and K = 4, 5 add model complexity without important gains in model fit.

Figure 68 (left) shows the first two principal components, along with the contours
of the K = 2 multivariate Normal components. Observations are coloured according
to the component (cluster) with highest probability. The right panel shows the
contours for the model with K = 3 components, which we can see closely resembles

195

the 3 species of flowers actually present in the data.

library(mclust)

library(mvtnorm)

data(iris)

x <- as.matrix(iris[,1:4])

e <- eigen(cov(x))$vectors

pcs <- x %*% e[,1:2]

xlim <- c(min(pcs[,1]),max(pcs[,1]))

ylim <- c(min(pcs[,2]),max(pcs[,2]))

xseq <- seq(min(pcs[,1]),max(pcs[,1]),length=300)

yseq <- seq(min(pcs[,2]),max(pcs[,2]),length=300)

xgrid <- expand.grid(xseq,yseq)

2 clusters

m1 <- t(e[,1:2]) %*% m[,1,drop=FALSE]

S1 <- t(e[,1:2]) %*% v[,,1] %*% e[,1:2]

f1 <- dmvnorm(xgrid, m1, S1)

m2 <- t(e[,1:2]) %*% m[,2,drop=FALSE]

S2 <- t(e[,1:2]) %*% v[,,2] %*% e[,1:2]

f2 <- dmvnorm(xgrid, m2, S2)

#

op <- par(mfrow=c(1,2), mai=c(1,1,1,1)/8)

plot(pcs, xlab='PC1',ylab='PC2',xlim=xlim,ylim=ylim,cex.lab=1.25,

pch=clus,col=clus, xaxt='n', yaxt='n')

par(new=TRUE)

contour(x=xseq, y=xseq, z=matrix(f1,nrow=length(xseq),ncol=length(xseq)),

xlab='',ylab='',xaxt='n',yaxt='n',drawlabels=FALSE,col=1)

par(new=TRUE)

contour(x=xseq, y=xseq, z=matrix(f2,nrow=length(xseq),ncol=length(xseq)),

xlab='',ylab='',xaxt='n',yaxt='n',drawlabels=FALSE,col=2)

3 clusters

bic1 <- mclustBIC(iris[,1:4],G=3,modelNames='VVV', verbose=F)

mclust1 <- mclustModel(iris[,1:4],BICvalues=bic1)

pro <- mclust1parpro

m <- mclust1parmean

v <- mclust1parvariance$sigma

clusprob <- mclust1$z

clus <- apply(clusprob,1,which.max)

#

m1 <- t(e[,1:2]) %*% m[,1,drop=FALSE]

S1 <- t(e[,1:2]) %*% v[,,1] %*% e[,1:2]

f1 <- dmvnorm(xgrid, m1, S1)

196

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●P
C

2

Figure 68: Multivariate Normal contours for the 2 cluster (left) and 3 cluster (right)
solutions. Observations are coloured according to the cluster with highest probabil-
ity

m2 <- t(e[,1:2]) %*% m[,2,drop=FALSE]

S2 <- t(e[,1:2]) %*% v[,,2] %*% e[,1:2]

f2 <- dmvnorm(xgrid, m2, S2)

m3 <- t(e[,1:2]) %*% m[,3,drop=FALSE]

S3 <- t(e[,1:2]) %*% v[,,3] %*% e[,1:2]

f3 <- dmvnorm(xgrid, m3, S3)

col <- clus; col[col==3] <- 4

plot(pcs, xlab='PC1',ylab='PC2',xlim=xlim,ylim=ylim,cex.lab=1.25,

pch=clus,col=col, xaxt='n', yaxt='n')

par(new=TRUE)

contour(x=xseq, y=xseq, z=matrix(f1,nrow=length(xseq),ncol=length(xseq)),

xlab='',ylab='',xaxt='n',yaxt='n',drawlabels=FALSE,col=1)

par(new=TRUE)

contour(x=xseq, y=xseq, z=matrix(f2,nrow=length(xseq),ncol=length(xseq)),

xlab='',ylab='',xaxt='n',yaxt='n',drawlabels=FALSE,col=2)

par(new=TRUE)

contour(x=xseq, y=xseq, z=matrix(f3,nrow=length(xseq),ncol=length(xseq)),

xlab='',ylab='',xaxt='n',yaxt='n',drawlabels=FALSE,col=4)

par(op)

197

7.5 Cluster stability

Given any input data, any clustering algorithm will report potential clusters. It is
therefore important to assess how reliable, or reproducible, these clusters are.

• It is wise to try multiple clustering algorithms and compare the solutions.

• For algorithms like K-means with an element of randomness (due to choice of
initial clustering in K-means) it is useful to run the algorithm multiple times.

While useful, these strategies only assess robustness of clustering results in our
observed data. Usually we really want to check that these clusters would also be
observed in an independent data set. If we have lots of data, one option is to split
them into two data sets, run separate algorithms on each data and compare the
solutions.

As the amount of data is usually limited, a popular option is to generate a new
dataset that is a perturbed version of the original data. For instance, we could add
some random noise to the observed data, in which case we would have to decide what
amount of noise is reasonable. Another possibility is to obtain bootstrap samples
(i.e. sample n individuals with replacement from the original data, possible adding
random noise) and re-apply the algorithm.

Algorithm 7.5.1 (Assessing cluster reproducibility).
For b = 1, . . . , B, do the following steps:

(a) Create a perturbed data matrix X(b) from the original data X (e.g.
bootstrapping or adding random noise),

(b) Apply the clustering algorithm to X(b),

(c) Record the cluster characteristics (centroids, number of clusters etc.)
and cluster assignments.

After B iterations, report the distribution of the cluster characteristics
(e.g. centroids, number of clusters for a given distance threshold) or the
proportion of times two individuals were clustered together.

Because at each iteration we may obtain different clustering results, studying how
stable the clustering characteristics are gives us a sense of the uncertainty regarding
the clusters detected in the original data X.

Example 7.5.1. We generated n1 = 30 independent draws from N100(µ1, I), where
I is the 100 × 100 identity matrix and µ1j ∼ N(0, σ = 0.5) independently for
j = 1, . . . , 100. We then generated n2 = 20 additional samples from N100(µ2, I),
where µ2j ∼ N(0, σ = 0.5) (and are hence different from the µ1js). That is, we
generated data from 2 spherical clusters that differ only in their means µ1 and µ2.

We merged all data and applied hierarchical clustering with Pearson correlation
distance and complete linkage. Figure 69 (top) shows the dendrogram. While not
overwhelmingly clear, the dendrogram suggests the existence of 2-3 clusters.

198

To better assess cluster reproducibility, we obtained 500 bootstrap samples. For
each bootstrap sample we repeated the hierarchical clustering and divided the in-
dividuals into the 2 main clusters. We then compared if individuals that were
clustered together in the original data were again assigned to the same cluster in
the bootstrap samples, and computed a percentage of agreement (0 if the samples
never clustered together, 100 if they always clustered together). The middle panel
in Figure 69 shows the agreement scores. Yellow corresponds to 100 (individuals
always clustered together) and blue to 0 (individuals always in different clusters).
The plot reveals that individuals that were in the larger cluster in the original data
also tended to be in the same cluster in the bootstrap samples. Similarly, the smaller
cluster also showed high agreement scores.

Next we tried defining 4 clusters on these same data. We again repeated the
bootstrap analysis and computed agreement scores (Figure 69, bottom). The four
clusters were clearly not reproducible in the bootstrap samples. The sub-clusters
obtained when dividing each of the main two clusters are not distinguishable: indi-
viduals in two different sub-clusters clustered together very frequently.

Below is the R code used generate the example. It uses the R package ClassDiscovery,
which can be obtained at bioinformatics.mdanderson.org/Software/OOMPA. As
a remark, this package assumes that variables are in rows and individuals in columns,
which is why we transpose the data when calling its functions.

library(mvtnorm)

library(ClassDiscovery)

library(fields)

n1 <- 30; n2 <- 20; p <- 100

set.seed(2)

mu1 <- rnorm(p,sd=0.5); mu2 <- rnorm(p,sd=0.5)

x1 <- rmvnorm(n1, mu1, diag(p))

x2 <- rmvnorm(n2, mu2, diag(p))

x <- rbind(x1, x2)

hc <- hclust(distanceMatrix(t(x), 'pearson'), method='complete')

bc <- BootstrapClusterTest(t(x), cutHclust, nTimes=500, k=2,

metric='pearson', verbose=FALSE)

bc4 <- BootstrapClusterTest(t(x), cutHclust, nTimes=500, k=4,

metric='pearson', verbose=FALSE)

plot(hc,hang=-1,main='',xlab='')

cols <- blueyellow(64)

breaks <- seq(0,1, len=65)

image(bc, dendrogram=hc, col=cols, breaks=breaks, margins=c(2,8))

image.plot(legend.only=TRUE, zlim=c(0,1), col=cols, breaks=breaks)

image(bc4, dendrogram=hc, col=cols, breaks=breaks, margins=c(2,8))

image.plot(legend.only=TRUE, zlim=c(0,1), col=cols, breaks=breaks)

To illustrate what happens when no clusters are present in the data at all, we
generated 50 draws from N100(µ1, I) and applied the same analyses. Figure 70

199

bioinformatics.mdanderson.org/Software/OOMPA

13 25 15 6 23 2 12 5 21 7 10 24 19 26 18 20 11 14 17 30 27 22 29 3 16 4 9 8 1 28 49 41 48 33 39 50 31 40 45 32 35 36 38 42 43 34 46 44 37 47

0.
2

0.
3

0.
4

0.
5

0.
6

hclust (*, "complete")

H
ei

gh
t

13 15 23 12 21 10 19 18 11 17 27 29 16 9 1 49 48 39 31 45 35 38 43 46 37

13
25
15
6
23
2
12
5
21
7
10
24
19
26
18
20
11
14
17
30
27
22
29
3
16
4
9
8
1
28
49
41
48
33
39
50
31
40
45
32
35
36
38
42
43
34
46
44
37
47

0.0

0.2

0.4

0.6

0.8

1.0

13 15 23 12 21 10 19 18 11 17 27 29 16 9 1 49 48 39 31 45 35 38 43 46 37

13
25
15
6
23
2
12
5
21
7
10
24
19
26
18
20
11
14
17
30
27
22
29
3
16
4
9
8
1
28
49
41
48
33
39
50
31
40
45
32
35
36
38
42
43
34
46
44
37
47

0.0

0.2

0.4

0.6

0.8

1.0

Figure 69: Hierarchical clustering 30 draws from N100(µ1, I) and 20 draws from
N100(µ2, I) (Pearson distance, complete linkage). Dendrogram (top left), Bootstrap
agreement for 2 clusters (top right) and 4 clusters (bottom)

200

41 5 35 40 49 28 29 50 12 13 42 31 23 25 30 1 4 38 6 36 26 27 20 22 43 48 17 16 45 9 37 47 34 44 3 15 21 8 33 39 46 18 2 24 14 7 19 11 10 32

0.
20

0.
30

0.
40

0.
50

hclust (*, "complete")

H
ei

gh
t

41 35 49 29 12 42 23 30 4 6 26 20 43 17 45 37 34 3 21 33 46 2 14 19 10

41
5
35
40
49
28
29
50
12
13
42
31
23
25
30
1
4
38
6
36
26
27
20
22
43
48
17
16
45
9
37
47
34
44
3
15
21
8
33
39
46
18
2
24
14
7
19
11
10
32

0.0

0.2

0.4

0.6

0.8

1.0

Figure 70: Hierarchical clustering 50 draws from N100(µ1, I) (Pearson distance,
complete linkage). Top: dendrogram; Bottom: bootstrap agreement for 2 clusters

displays the results. It is hard to get a clear picture from the dendrogram. There
appear to be two main branches, although these are not very clearly defined. The
situation is much clearer when we look at the bootstrap agreement scores. It is
now obvious that individuals from cluster 1 are frequently grouped with individuals
from cluster 2 in the bootstrap iterations (and vice versa), which indicates that the
2 main clusters are not reproducible. R code is provided below.

library(mvtnorm)

n1 <- 30; n2 <- 20; p <- 100

set.seed(1)

mu1 <- rnorm(p,sd=0.5);

xx <- rmvnorm(n1+n2, mu1, diag(p))

hct <- hclust(distanceMatrix(t(xx),'pearson'),method='complete')

bct <- BootstrapClusterTest(t(xx), cutHclust, nTimes=500, k=2,

metric='pearson', verbose=FALSE)

plot(hct,hang=-1,main='',xlab='')

cols <- blueyellow(64)

breaks <- seq(0,1, len=65)

image(bct, dendrogram=hct, col=cols, breaks=breaks, margins=c(2,8))

image.plot(legend.only=TRUE, zlim=c(0,1), col=cols, breaks=breaks)

par(op)

201

7.6 Heatmaps and clustering to visualize big data

Clustering is a common strategy used in large data sets to help detect or display
certain patterns. For instance, suppose we have a few hundred patients and that for
each of them we record tens of thousands of characteristics such as gene expression.
Clustering can help get a first idea of which patients are similar to each other.

As another example, suppose that after a certain statistical analysis we found a
few hundred genes that help distinguish two patient subgroups, say healthy vs. sick
individuals. As the following example illustrates, it can then be helpful to cluster
both rows (patients) and columns (genes) in our data matrix and produce a heatmap
(in which colours represent numerical values, for example ranging from dark blue
for the lowest value through grey-green for middle values to bright yellow for the
highest values).

Example 7.6.1. The dataset ALL in R package ALL contains gene expression mea-
surements for 12,625 genes and 47 patients with Acute Lymphoblastic Leukemia.
Among these 47 patients, 37 showed a certain mutation in gene BCR/ABL (group
1) and the remaining 10 showed a mutation in gene ALL1/AF4 (group 2).

The researchers were interested in finding genes that could help explain the differ-
ences between these 2 groups. To this purpose, they performed a certain statistical
analysis (which we will not address here) and selected 165 genes that showed strong
differences between groups.

Rather than showing a large 165 × 47 table, the researchers decided to cluster
patients using hierarchical clustering with Euclidean distance and complete linkage.
They also clustered genes, computing the distance between 2 genes as 0.5(1 − rij),
where rij is the Pearson correlation. They then produced a heatmap, where the
intensity of the colours indicates the level of expression for each gene and patient
(blue for low, yellow for high expression). Figure 71 shows the result. Here genes are
shown in rows and patients in columns, as this is the convention in gene expression
studies. We can appreciate two clear groups of genes and patients, where the patient
clusters coincide with the original BRL/ABL and ALL1/AF4 subgroups. We ob-
serve a distinct expression pattern between subgroups, which is not surprising. The
statistical analysis selected genes showing differences between groups, so we expect
to see these differences in the heatmap. The point here is that the heatmap helps
convey the results of the analysis in a visual and easily interpretable manner that
can be conveyed to non-statisticians.

library(ALL)

library(limma)

library(ClassDiscovery)

data("ALL")

eset <- ALL[, ALL$mol.biol %in% c("BCR/ABL", "ALL1/AF4")]

f <- factor(as.character(eset$mol.biol))

design <- model.matrix(~f)

fit <- eBayes(lmFit(eset,design))

selected <- p.adjust(fit$p.value[, 2]) <0.05

202

esetSel <- eset [selected,]

color.map <- function(mol.biol) { if (mol.biol=="ALL1/AF4") "#FF0000"

else "#0000FF" }
patientcolors <- unlist(lapply(esetSel$mol.bio, color.map))

d <- .5*(1-cov2cor(cov(t(exprs(esetSel)))))

h1 <- hclust(as.dist(d), method='complete')

exprs(esetSel) %>% str

num [1:165, 1:47] 7.62 8.06 6.88 8.65 6.12 ...

- attr(*, "dimnames")=List of 2

..$: chr [1:165] "1007_s_at" "1039_s_at" "1126_s_at" "1134_at" ...

..$: chr [1:47] "01005" "03002" "04006" "08001" ...

h2 <- hclust(dist(exprs(esetSel) %>% t), method='complete')

X <- exprs(esetSel); X <- t(scale(t(X)))

image(X %>% t, col=blueyellow(100), xaxt='n', yaxt='n')

image(X[, h2$order] %>% t, col=blueyellow(100), xaxt='n', yaxt='n')

image(X[h1$order, h2$order] %>% t, col=blueyellow(100), xaxt='n', yaxt='n')

heatmap(exprs(esetSel), col=blueyellow(100), ColSideColors=patientcolors,

Rowv=as.dendrogram(h1), cexRow=.3)

203

(a) Original data (no reordering of rows or
columns)

(b) Data with re-ordered columns

(c) Data with re-ordered rows and columns

26
00

8
04

00
6

63
00

1
28

02
8

28
03

2
31

00
7

24
00

5
19

00
5

16
00

4
15

00
4

22
01

0
24

00
1

28
01

9
30

00
1

28
02

1
15

00
5

09
00

8
11

00
5

28
03

6
62

00
1

27
00

3
26

00
3

62
00

2
65

00
5

84
00

4
03

00
2

20
00

2
12

01
2

22
01

3
37

01
3

14
01

6
27

00
4

49
00

6
24

01
1

08
01

1
62

00
3

12
02

6
31

01
1

43
00

1
24

01
7

68
00

3
12

00
6

24
01

0
24

02
2

08
00

1
12

00
7

01
00

5

1992_at
35260_at
39327_at
37043_at
41346_at
35816_at
32378_at
402_s_at
38056_at
1308_g_at
1928_s_at
33440_at
40953_at
1039_s_at
33774_at
34699_at
1674_at
40692_at
40088_at
39556_at
32872_at
40570_at
40215_at
1007_s_at
36643_at
35714_at
39781_at
41237_at
37383_f_at
40369_f_at
2039_s_at
40480_s_at
41742_s_at
41743_i_at
35016_at
38833_at
41723_s_at
36773_f_at
36878_f_at
38096_f_at
37039_at
38095_i_at
307_at
41397_at
37967_at
32116_at
39424_at
2057_g_at
39837_s_at
36795_at
38631_at
1463_at
31508_at
1461_at
41215_s_at
34789_at
37600_at
41745_at
675_at
676_g_at
41193_at
1307_at
34210_at
32977_at
37420_i_at
1134_at
40167_s_at
33244_at
1389_at
266_s_at
1267_at
37539_at
38408_at
37413_at
1911_s_at
35769_at
37006_at
36650_at
38968_at
32562_at
41744_at
34362_at
33809_at
36536_at
41266_at
34850_at
40504_at
37280_at
36275_at
38032_at
37225_at
41401_at
176_at
35665_at
36092_at
33358_at
41448_at
37809_at
40763_at
36149_at
41071_at
41478_at
39315_at
873_at
37558_at
205_g_at
40393_at
931_at
33193_at
39635_at
35256_at
38223_at
34247_at
37184_at
1500_at
41779_at
34961_at
37251_s_at
33936_at
39135_at
36798_g_at
37320_at
41470_at
1973_s_at
37724_at
36897_at
38413_at
1929_at
37810_at
1947_g_at
35663_at
36398_at
41191_at
39716_at
1914_at
36873_at
39210_at
33528_at
39717_g_at
41348_at
34098_f_at
38004_at
37479_at
37978_at
177_at
40784_at
40785_g_at
31615_i_at
34106_at
919_at
1140_at
36777_at
37193_at
33412_at
40493_at
31472_s_at
1126_s_at
2036_s_at
32475_at
37099_at
33405_at
32215_i_at
35831_at
31605_at
38385_at

(d) Data with re-ordered rows and columns, with
the row’s and column’s dendrograms (obtained
using the heatmap function)

Figure 71: Heatmap for ALL data, without/with various orderings of the columns
(patients) and rows (Genes). The hierarchical clustering is done with complete
linkage and correlation distance was used for genes (rows), and Euclidean distance
for patients (columns).

204

8 Additional Topic: Kernel Methods (still ST323)

Kernel methods are a broad family of statistical techinques, which extend many
well-known methods to work with complex data. In much of this module, we have
(sometimes implicitly) exploited linear structure in data, but for some data this is
not directly possible and our favourite statistical analyses fail. For example, if data
is far from being normally distributed, then it cannot be characterised simply by a
mean and covariance matrix.

The main idea of kernel methods is to map our data to a new (usually higher
dimensional) vector space, where the data does have some linear structure. Once we
have done this, we can then use our earlier techniques more successfully. Instead of
working with the observations (xi)i directly, we work with a nonlinear transformation
of the observations, that is we work with yi , Φ(xi), i = 1, . . . , n, where Φ : Rp → H
is called the feature map, and is typically nonlinear. HereHmay be Rq with q � p,
but often it is taken to be an infinite dimensional function space.

We focus on the familiar setting where the xi ∈ Rp, but these techniques can be
used to analyse much more complicated data types, including genomic data, graphs,
text, and images. All we need is a good choice of feature map Φ.

8.1 Kernel Principal Component Analysis

Kernel PCA (KPCA) is a tool for exploratory data analysis that extends PCA. It
can be useful in cases where the data has some structure that is not linear. For
instance Figure 72 shows data coming from two groups. The two groups are not
linearly separable, even after performing a PCA, but a KPCA with a Gaussian
kernel (explained below) does separate the two groups linearly.

As in PCA, the goal of KPCA is to summarise each datapoint xi ∈ Rp into
uncorrelated scores sik, k = 1, . . . , K, where K ≤ p. In standard PCA working
with X directly, Exercise 4.8 tells us that the PC scores are given by the spectral
decomposition of X̃X̃T, where X̃ is the column-centered version of X. We know that
X̃ = HX, where H , I − 11T/n is the n × n matrix with 1 − 1/n in the diagonal,
and −1/n as off-diagonal entries. This tells us therefore that if

X̃X̃T = HXXTH = UΛUT (8.1.1)

is the spectral decomposition of HXXTH, then the kth PC scores (sik)i are given
by the kth column of UΛ1/2. The matrix XXT has (i, j)th entry given by xT

i xj.
In KPCA we replace this inner product between xi and xj by the inner product
between Φ(xi) and Φ(xj) in the vector space H. Another way of thinking about this
bypasses the choice of Φ, which can be difficult. Instead, we can directly specify a
kernel function: k(·, ·) : Rp × Rp → R, which is thought of as

k(x,x′) , 〈Φ(x),Φ(x′)〉H. (8.1.2)

205

Definition 8.1.1 (Kernel function).
A function

k(·, ·) : Rp × Rp → R

is called a kernel function if for all m ≥ 1 and all x1, . . . ,xm ∈ Rp, the
m×m matrix K with (K)ij , k(xi,xj) is symmetric positive semi-definite.

The following two results tell us that defining a kernel function is equivalent to
defining the feature map Φ.

Proposition 8.1.2 (Every feature map defines a kernel).
If k(·, ·) is defined by (8.1.2), then it is a kernel function.

Proof. Left as an exercise.

Theorem 8.1.3 (Moore–Aronszajn theorem: every kernel has an
associated feature map).

If k(·, ·) is a kernel function, then there exists a Hilbert space H with
inner-product 〈·, ·〉H, and a mapping Φ : Rp → H such that

k(x,x′) = 〈Φ(x),Φ(x′)〉H, ∀x,x′ ∈ Rp.

Proof. The proof uses advanced analysis, and is not examinable.

We now know that we can work with a kernel instead of using the feature map.
Here are examples of well-known kernels :

linear: k(x,x′) , xTx′,

polynomial: k(x,x′) , (1 + xTx′)d, for some d ∈ {1, 2, . . .},

Gaussian: k(x,x′) , exp
(
− |x−x

′|2
2σ2

)
, where σ > 0.

In particular, the linear kernel is equivalent to taking the feature map to be the
identity on Rp.

Let us now turn again to our PC scores computed from the yis. We know
that the first step is to compute the matrix HYYTH, and then compute its spectral
decomposition. Using the kernel k(·, ·) defined by (8.1.2), we replace (YYT)ij by

〈yi,yj〉H = 〈Φ(xi),Φ(xj)〉H = k(xi,xj).

This leads to the following algorithm for KPCA:

Algorithm 8.1.1 (Kernel PCA).
Given data x1, . . . ,xn and a kernel function k(·, ·),

1. Compute the n× n matrix K, where (K)ij = k(xi,xj).

2. Compute the row and column centered version of K, that is K̃ ,
HKH, where H = I − 11T/n.

206

3. Compute a spectral decomposition K̃ = UΛUT.

4. Compute UΛ1/2, whose columns will be the PC scores.

Figure 72 (see code below) shows an example of a dataset with two groups, with
the (ordinary) PCA, and two KPCAs with polynomial kernel (d = 4), and Gaussian
kernel (σ = 1). We notice that the polynomial kernel PCA does not separate the
group linearly, but the Gaussian PCA does separate the group linearly. The choice
of the kernel depends on the applications, and it is common to try out different
kernels (and kernel parameters) to see which gives the “best” result.

x1 = matrix(rnorm(2*100), ncol=2)

theta <- runif(100, min=0, max=2*pi)

x2 <- ((3 + runif(100))*c(cos(theta), sin(theta))) %>%

matrix(ncol=2, byrow=F)

X = rbind(x1, x2)

pch <- rep(c(1, 20), each=100)

plot(X, pch=pch, xaxt='n', yaxt='n', xlab='', ylab='')

prcomp(X)$x[,1:2] %>% plot(pch=pch, xaxt='n', yaxt='n',

xlab='PC1', ylab='PC2') ## looks the same as the data

Polynomial kernel

quadratic <- function(x,y){
(1+ sum(x*y))^4

}

Gaussian kernel

gaussian <- function(x,y){
exp(-sum((x-y)^2)/2)

}

kernel.pca <- function(X, kernel){
K <- matrix(0, nrow=nrow(X), ncol=nrow(X))

for(i in 1:nrow(K)){
#print(sprintf("%d of %d", i, nrow(K)))

for(j in i:ncol(K)){
K[i,j] <- kernel(X[i,], X[j,])

}
}
K <- K + t(K)

diag(K) <- diag(K)/2

#m <- nrow(K); kc <- t(t(K - colSums(K)/m) - rowSums(K)/m) + sum(K)/m^2

K <- scale(K, scale=F)

K <- scale(t(K), scale=F) %>% t

K.eigen <- eigen(K, symmetric=TRUE)

npos <- sum(K.eigen$values > 0)

207

return(list(scores=K.eigen$vector[,1:npos]

%*% diag(sqrt(K.eigen$value[1:npos])),

variances=K.eigen$value[1:npos]))

}

X.kpca <- kernel.pca(X, quadratic)

X.kpca$scores[,1:2] %>% plot(pch=pch, xaxt='n', yaxt='n', xlab='KPC1', ylab='KPC2')

X.kpca <- kernel.pca(X, gaussian)

X.kpca$scores[,1:2] %>% plot(pch=pch, xaxt='n', yaxt='n', xlab='KPC1', ylab='KPC2')

8.2 Kernel Mean Embeddings

When working with normal data, the means and covariance matrices of data play
a crucial role as they completely characterise the underlying distributions. For
example, in Section 5.3.3, where we wanted to test whether two samples came from
the same distribution, we tested whether or not they had the same mean. With
more complex data types this can be insufficient, as it can happen that two different
distributions have the same mean, even after assuming that they have the same
covariance matrix.

Kernel mean embeddings work by mapping distributions to a more complex
space, where the mean characterises the distribution. Once this is done, we are free
to base our statistical analysis on the analysis of means, which is something that we
are familiar with. Recalling our feature map Φ : Rp → H, we represent a random
variable X by its kernel mean embedding

µX := E{Φ(X)},

which is an element of H. In fact, for some choices of H, we may take Φ to be
an injective mapping between distributions of X and elements of H. As usual, we
estimate this by the sample mean

µ̂X :=
1

n

n∑
i=1

Φ(xi).

Now suppose that we have two samples x1, . . . ,xm and y1, . . . ,yn, and we would
like to know whether these two samples could have come from the same distribution.
As in Section 5.3.3, we compare µ̂X to µ̂Y by looking at the size of µ̂X − µ̂Y. Here,
this is represented by its norm in the space H:

‖µ̂X − µ̂Y‖2
H = 〈µ̂X − µ̂Y, µ̂X − µ̂Y〉H.

As with KPCA, we can derive a simple expression for this which only depends on
Φ through the kernel function k.

208

●

●

●

●
●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●● ●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(a) Original data (from 2 groups).

●

●

●

●

●

●

●

● ●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

PC1

P
C

2

(b) (ordinary) PCA of the data.

●
●

●
●●●
●

● ●●

●

●●●●●●●●
●

●

●●●●●●●●●
●● ●●●●●
●●

●
●●● ●●●

●
●●●●

●
● ●●

●●

●

●●●●
●

●

●
●

●

●●●●●●●
●

●●●●●

●

●●
●

●●●●●
●●

● ●
●

●●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

KPC1

K
P

C
2

(c) Kernel PCA of the data using a polyno-
mial kernel.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

KPC1

K
P

C
2

(d) Kernel PCA of the data using a Gaussian
kernel.

Figure 72: Illustration of the advantage of kernel PCA for data with multiple groups
that are not linearly separable. Notice that the Gaussian kernel PCA separates
linearly the two groups.

209

Proposition 8.2.1. We have that

‖µ̂X − µ̂Y‖2
H =

1

m2

m∑
i,j=1

k(xi,xj)−
2

mn

m∑
i=1

n∑
j=1

k(xi,yj) +
1

n2

n∑
i,j=1

k(yi,yj).

Proof. See video.

This measure of the difference between two distributions can be used to derive
hypothesis tests, but the theory of this is beyond the scope of the course. For a
biological data example in R, see

https://bioconductor.org/packages/release/bioc/html/MMDiff2.html,
for an image analysis example in Python, see

https://docs.seldon.io/projects/alibi-detect/en/latest/examples/cd_

mmd_cifar10.html,
and for a text analysis example in Python, see

https://docs.seldon.io/projects/alibi-detect/en/stable/examples/cd_

text_imdb.html.
A simple implementation in R is given by kmdd in the package kernlab.

210

https://bioconductor.org/packages/release/bioc/html/MMDiff2.html
https://docs.seldon.io/projects/alibi-detect/en/latest/examples/cd_mmd_cifar10.html
https://docs.seldon.io/projects/alibi-detect/en/latest/examples/cd_mmd_cifar10.html
https://docs.seldon.io/projects/alibi-detect/en/stable/examples/cd_text_imdb.html
https://docs.seldon.io/projects/alibi-detect/en/stable/examples/cd_text_imdb.html

9 Advanced Topic (only ST412): Multidimensional

Scaling

Suppose that you are given a matrix containing distances (or, alternatively, similar-
ities) between individuals. Multidimensional scaling (MDS) concerns representing
the individuals in a low-dimensional space, so that Euclidean distances in the low-
dimensional space are as similar as possible to the original distances. For instance,
given the distances between European capitals (in miles), we would hope to recon-
struct a map of Europe.

There are many practical applications where one might have to deal with dis-
tances or similarities rather than actual data for each individual. One possibility is
that only distances are available (or easily obtained). Another possibility is that,
even when data for individuals are available, we wish to define our own measure of
distance to reflect certain aspects of the problem we’re dealing with. Going back to
the previous example, we may be more interested in travelling time between cities
rather than physical distances. In this case we would define a distance matrix based
on time, which might give rise to a different map from when using miles.

Beyond these simple examples, in many real-life applications it can be quite
important how we define distances. Multidimensional scaling offers great flexibility,
as it doesn’t force us to use any pre-specified distance metric.

9.1 Introduction

The goal of classical multidimensional scaling is, starting from a dissimilarity matrix
∆ = (δij), where δij is the dissimilarity between the ith and jth individual or
observation (you think of a dissimilarity as a distance, but without the constraints
of a metric distance), to represent points in a low dimensional space Rk such that the
Euclidean distances between points approximate ∆. We assume that the number
of dimensions k is given. Let D = (dij) be these Euclidean distances. A natural
objective would be to look at how close D and ∆ are. One obvious way of measuring
this is to compute the sum of squared differences between the dissimilarities ∆ and
the Euclidean distances D, in which case the goal becomes to minimise the so-called
raw stress function (‘stress’ stands for ‘standardized residual sum of squares’):

min
D

n∑
i=1

n∑
j=1

(δij − dij)2 = ‖∆−D‖2. (9.1.1)

Because the value of the raw stress depends on the units of measurement, it is
common to report the stress-1 function, which is simply the following standardized
version of the raw stress

min
D

∑n
i=1

∑n
j=1(δij − dij)2∑n

i=1

∑n
j=1 δ

2
ij

. (9.1.2)

211

The denominator in (9.1.2) does not depend on dij, so we may equivalently
minimize (9.1.1). The appealing property of (9.1.2) is that its values lie in [0, 1], so
it can be easily interpreted.

Without any constraints on D, both (9.1.1) and (9.1.2) would be solved by
D = ∆. If there are only rank constraints on D, then the Young–Eckart–Mirsky
Theorem (Theorem 2.2.3) tells us that D is given by a truncation of the singular
value decomposition of ∆. That is, if ∆ =

∑n
i=1 liuiv

T
i , then the solution of (9.1.1)

over all matrices D of rank at most k is D =
∑k

i=1 liuiv
T
i . Unfortunately, this

solution does not necessarily reflect the pairwise distances of n points in Rq, for
some q ≥ 1, and therefore (9.1.1) cannot be solved directly using these results, but
needs to be solved using numerical methods, such as gradient descent. Nevertheless,
there is a way of getting a closed form solution to MDS if we take the objective
function ‖H∆2H − HD2H‖F , where ∆2 = (δ2

ij), D2 = (d2
ij), ‖·‖F is the Frobenius

norm (see page 17) and H is the n × n centering matrix. This is called classical
scaling, or classical multidimensional scaling.

9.2 Classical scaling (also called classical MDS)

Let X be an n × k matrix, which we will assume to be column-centered (without
loss of generality, as Euclidean distances are invariant to translations). The squared
Euclidean distance between rows xi and xj is d2

ij = (xi − xj)
T(xi − xj) = xT

i xi +
xT
j xj − 2xT

i xj. The matrix of Euclidean distances can be written as

D2 = 1(xT
1 x1, . . . ,x

T
nxn) +

xT
1 x1
...

xT
nxn

1T − 2

xT
1 x1 xT

1 x2 . . . xT
1 xn

. . .
xT
nx1 xT

nx2 . . . xT
nxn

= 1sT + s1T − 2XXT (9.2.1)

= 1sT + s1T − 2S, (9.2.2)

where 1 is an n× 1 vector with ones, s is a vector of squared lengths, and S = XXT

is an inner-product matrix measuring similarities (with diag(S) = s). We note
that, because X is column-centered, S is also column-centered (and row-centered,
as it’s symmetric). To see this, the sum of the jth column in S is

∑n
i=1 xT

i xj =(∑n
i=1 xT

i

)
xj = 0Txj = 0.

Recall the centering matrix H = I − 1
n
11T (we have seen that HA is equal to

zero-centering the columns in A). Then from (9.2.2),

HD2H = H1sTH +Hs1TH − 2HSH = 0sTH +Hs0− 2S = −2S,

since centering a vector of 1’s gives 0’s and S was already centered so that HSH = S.
In words, a doubly-centered distance matrix D∗2 = HD2H is equal to minus twice
the inner-products −2S = −2XXT. We can therefore try to find X directly from
−1

2
HD2H. Since D2 is not known, we can replace it by ∆2, and therefore get the

following algorithm for computing X.

212

Algorithm 9.2.1 (Classical MDS). Let ∆ = (δij) be an n×n dissimilarity
matrix, which we wish to approximate using a k-dimensional space. Let
∆2 = (δ2

ij).

1. Find the associated similarity matrix S∆2 = −1
2
H∆2H

2. Find the eigendecomposition S∆2 = EΛET

3. Select the k largest eigenvalues. Let Λk be the corresponding subma-
trix of Λ and Ek the corresponding columns in E. Then the coordi-
nates are given by X(k) = Ek (Λk)

1/2.

Notice that the Eckart–Young–Mirsky Theorem (Theorem 2.2.3) implies that this
algorithm solves the problem of finding the n× k matrix X such that

‖S∆2 − XXT‖F

is minimized.

Example 9.2.1. We consider the dataset eurodist which measures the road dis-
tances (km) between 21 European cities. We apply classical scaling to the distance
matrix in order to produce a 2-dimensional map. The result (after flipping the y-
axis, which does not change the solution in terms of distances) is shown in Figure 73.
The figure highly resembles the map of Europe. When producing the plot, it is im-
portant to set the aspect ratio of the x and y-axes to 1, to that we can correctly
perceive Euclidean distances by looking at the map.

The stress-1 function is equal to 0.0081, a very small value that indicates the
approximation is of very high quality. This appears reasonable, as we are working
with geographical distances.

loc <- cmdscale(eurodist,k=2)

x <- loc[, 1]

y <- -loc[, 2] #flip so North is at the top

asp=1 ensures Euclidean dist represented correctly

plot(x,y,type="n",xlab="",ylab="",asp=1,axes=FALSE,

main="Classical")

text(x,y,rownames(loc),cex=0.8)

compute stress-1 at the optimum

dexact <- as.matrix(eurodist)

dexact <- as.vector(dexact[upper.tri(dexact)])

dapprox <- dist(loc,method='euclidean')

dapprox <- as.matrix(dapprox)

dapprox <- as.vector(dapprox[upper.tri(dapprox)])

sum((dexact-dapprox)^2)/sum(dexact^2)

[1] 0.008125444

213

Classical

Athens

Barcelona

BrusselsCalais
Cherbourg

Cologne

Copenhagen

Geneva

Gibraltar

Hamburg

Hook of Holland

Lisbon
Lyons

Madrid
Marseilles Milan

Munich

Paris

Rome

Stockholm

Vienna

Figure 73: Maps approximating road distances between European cities using clas-
sical MDS.

214

Proposition 9.2.2 (Classical MDS). Let Y be an n × p matrix, and
suppose that ∆ was originally obtained by computing Euclidean distances
between rows in Y,

∆2 = 1sTy + sy1
T − 2YYT

Then the k-dimensional classical scaling solution is equivalent to plotting
the first k principal components scores of Y.

The proof follows immediately from Algorithm 9.2.1 and derivations leading to
it, after noting that S∆2 = −1

2
H∆2H = YYT, The implication of Proposition 9.2.2

is that classical scaling can be seen as a generalization of PCA. PCA implicitly
defines Euclidean distances between rows, while MDS can use any other user-defined
distance. It also gives a nice interpretation of the principal components plot as a
map where distances approximate the Euclidean distances computed on the full
data.

9.3 Beyond classical scaling

There are several popular extensions of classical scaling which, instead of minimizing
(9.1.1), target other functions. While these alternatives offer greater flexibility,
in general there is not a closed-form solution and one must resort to numerical
optimization methods. Here we shall not worry about how one would actually
implement the optimization; just assume that there is adequate software for this
purpose.

One family of methods generalizing classical scaling is called metric scaling. As
in classical scaling, the stress function tries to approximate the exact value of dij.
Two such scaling methods focus on the stress-2 function or on relative errors (the
latter being also called Sammon scaling). The stress-2 function is the R2 coefficient
(coefficient of determination) between the original and approximated distances. Of
course, here the goal is to maximize (rather than minimize) stress-2.

Definition 9.3.1 (Stress-2 function).

max

(∑
i<j(dij − d̄)(δij − δ̄)

)2

s2
ds

2
δ

, (9.3.1)

where d̄, δ̄ are the means across dij and δij (respectively), and s2
d, s

2
δ the

variances.

The stress-2 function can be interpreted as the proportion of variability in dij
explained by δij. Similar to stress-1, it is guaranteed to be in [0, 1]. This is not the
case for the target function in Sammon mapping, which we define below.

215

Definition 9.3.2 (Sammon and elastic scaling). The goal in Sammon
scaling is to minimize

min
n∑
i=1

n∑
j=1

(δij − dij)2

δij
. (9.3.2)

Elastic scaling minimizes relative errors

min
n∑
i=1

n∑
j=1

(δij − dij)2

δ2
ij

. (9.3.3)

We comment on differences between (9.1.1), (9.3.1) and (9.3.2). Both stress-1
and stress-2 minimize absolute errors, which typically makes the solutions sensitive
to large values of dij and δij. By giving larger weight to individuals who are far
away from each other, the map given by (9.3.1) tends to approximate large dij
more accurately than small dij. In particular, if there are outliers in dij these can
have a substantial effect on the solution. In contrast, (9.3.2)-(9.3.3) down-weight
large δij (in particular, (9.3.3) minimizes squared relative errors (1− dij/δij)2). As
a consequence, maps produced by (9.3.2)-(9.3.3) tend to represent small dij more
accurately than large dij, and to be less sensitive to outliers.

All methods we have seen so far fall within the family of metric scaling. Non-
metric scaling methods is an alternative family of methods which, rather than trying
to approximate the exact distances dij, approximate a monotone increasing trans-
formation h(δij) of the dissimilarities.

Definition 9.3.3 (Non-metric scaling). The goal in non-metric scaling
is to minimize

n∑
i=1

n∑
j=1

(h(δij)− dij)2 (9.3.4)

with respect to both dij and h(·), where the latter is constrained to be an
increasing function.

That is, non-metric scaling reflects which objects are closer and which are farther
from each other, without so much emphasis on the exact values of the distances. A
common approach to non-metric scaling is to sequentially apply the following two
steps, until the solution is deemed to have converged.

Algorithm 9.3.1 (Non-metric scaling). Initialize ĥ(δij) = δij, the identity
function.

216

1. Update δ̃ij = ĥ(δij). Find dij minimizing∑
i,j

(δ̃ij − dij)2

which is a classical scaling problem with modified distances δ̃ij.

2. Update ĥ(·) by fitting a regression model dij = h(δ̃ij) + eij, where
(δ̃ij, dij) are as obtained in Step (1), h(·) is restricted to be increas-
ing and eij are the residuals. This can be done for instance with a
technique called monotone regression.

Repeat Steps 1. and 2. until convergence, i.e. the dij change little be-
tween two consecutive iterations.

Example 9.3.4. We reconsider Example 9.2.1 with road distances between Euro-
pean cities. We produce new maps with Sammon scaling and isoMDS (a type of
non-metric scaling), shown in the top and bottom panels of Figure 74. All three
solutions are quite similar, but some differences can be observed. For instance, the
distance between Munich and Vienna is larger in the middle panel than in the other
two panels.

library(MASS)

loc2 <- sammon(eurodist, k=2)

Initial stress : 0.01705

stress after 10 iters: 0.00951, magic = 0.500

stress after 20 iters: 0.00941, magic = 0.500

x <- loc2$points[,1]

y <- -loc2$points[,2]

op <- par(mfrow=c(2,1))

plot(x,y, type="n", xlab="", ylab="", asp=1, axes=FALSE, main="Sammon")

text(x,y, labels=rownames(loc), cex=0.8)

#isoMDS

loc4 <- isoMDS(eurodist,k=2)

initial value 7.505733

final value 7.505688

converged

x <- loc4$points[,1]; y <- -loc4$points[,2]

plot(x,y, type="n", xlab="", ylab="", asp=1, axes=FALSE, main="isoMDS")

text(x,y, labels=rownames(loc), cex=0.8)

par(op)

217

Sammon

Athens

Barcelona

BrusselsCalaisCherbourg Cologne

Copenhagen

Geneva

Gibraltar

HamburgHook of Holland

Lisbon
Lyons

Madrid
MarseillesMilan

Munich

Paris

Rome

Stockholm

Vienna

isoMDS

Athens

Barcelona

BrusselsCalais
Cherbourg

Cologne

Copenhagen

Geneva

Gibraltar

Hamburg
Hook of Holland

Lisbon
Lyons

Madrid MarseillesMilan

Munich

Paris

Rome

Stockholm

Vienna

Figure 74: Maps approximating road distances between European cities. Top: Sam-
mon scaling; Bottom: non-metric isoMDS

218

9.4 Quality of the approximation and number of dimensions

So far we discussed how to produce a k-dimensional representation of a distance
matrix. Obviously, the larger k the greater the quality of the approximation, but
the harder it becomes to convey the results. In practice, choosing k is a trade-off
between representation accuracy and practical considerations.

In order to measure the quality of the approximation we may check the value of
the target function, perhaps plotted versus k. Another popular option is to produce
Shepard plots, which plot dij against δij. Because of the connection between PCA
and classical scaling, when the input distances δij are Euclidean we may also examine
the eigenvalues in a scree plot and compute the proportion of explained variability
as we would normally do for PCA.

Example 9.4.1. We continue Examples 9.2.1 and 9.3.4 with road distances between
European distances.

Figure 75 shows the Shepard plots. As expected, classical scaling approximates
better large distances than Sammon scaling, but the approximation for small dis-
tances is worse. Non-metric MDS behaves similar to classical scaling in this example.

dapprox2 <- dist(loc2$points,method='euclidean')

dapprox2 <- as.matrix(dapprox2)

dapprox2 <- as.vector(dapprox2[upper.tri(dapprox2)])

dapprox4 <- dist(loc4$points,method='euclidean')

dapprox4 <- as.matrix(dapprox4)

dapprox4 <- as.vector(dapprox4[upper.tri(dapprox4)])

op <- par(mfrow=c(3,1))

plot(dapprox, dexact, main='Classical')

abline(0,1)

plot(dapprox2, dexact, main='Sammon')

abline(0,1)

plot(dapprox4, dexact, main='isoMDS')

abline(0,1)

par(op)

We now examine what might be an adequate value of k. For k = 1 the classical
scaling stress function is 0.131, which decreases substantially to 0.0081 for k = 2 and
then stays almost constant at 0.0079 for k = 3. This would suggest to choose k = 2,
which is in agreement with our intuition that kilometric distances on a relatively
small region are well approximated in two-dimensions. For instance, if we considered
cities around all the World we might need 3 dimensions to reflect that the Earth is
not flat!

kseq <- 1:3

stress <- rep(NA,length(kseq))

for (i in 1:length(kseq)) {

219

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●
●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●
●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

● ●● ●

●●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

0 1000 2000 3000 4000

0
10

00
20

00
30

00
40

00
Classical

dapprox

de
xa

ct

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●
●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●●● ●

● ●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

0 1000 2000 3000 4000

0
10

00
20

00
30

00
40

00

Sammon

dapprox2

de
xa

ct

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●
●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●
●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

● ●● ●

●●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

0 1000 2000 3000 4000

0
10

00
20

00
30

00
40

00

isoMDS

dapprox4

de
xa

ct

Figure 75: Shepard plots for classical (top), Sammon (middle) and non-metric (bot-
tom) scaling.

220

loc <- cmdscale(eurodist,k=kseq[i])

dapprox <- dist(loc,method='euclidean')

dapprox <- as.matrix(dapprox)

dapprox <- as.vector(dapprox[upper.tri(dapprox)])

stress[i] <- sum((dexact-dapprox)^2)/sum(dexact^2)

}
stress

[1] 0.131539705 0.008125444 0.007955413

221

	List of Definitions
	List of Results
	Introduction
	Algebra review
	Matrices and Eigendecompositions
	Singular Value Decompositions, or SVD
	Projection along Vectors, Angles, and Correlation
	Orthogonal Projectors
	Measuring distances

	Basic Exploratory Data Analysis
	Sanity Checks and Univariate Plots
	Scatterplots
	Star plots
	Chernoff faces
	Andrews curves
	High-dimensional datasets

	Dimension Reduction Techniques
	Multivariate moments
	Principal Component Analysis
	Basic definition
	Population Principal Components Analysis
	Subspace Characterizations of Principal Component Analysis
	Sample Principal Components
	Deciding the number of principal components
	Interpreting the principal components
	Principal component analysis on standardized variables
	Sampling Properties of Principal Components (not examinable)
	Principal components plots (EDA)

	The Biplot
	Canonical Correlation Analysis

	Multivariate Inference
	Multivariate probability distributions
	Multivariate Normal distribution
	Wishart distribution
	Hotelling's T2 distribution

	Parameter estimation
	Point estimates
	Confidence regions
	Asymptotics of the Sample Mean

	Hypothesis testing
	Test 1 multivariate Normal mean
	Likelihood Ratio Tests
	Compare 2 multivariate Normal means
	Compare K multivariate Normal means
	Repeated measures analysis

	Checking multivariate Normality

	Classification (or Supervised Learning)
	Basic Theory of Classification
	Classification for multivariate Normal predictors
	Data-based classifiers and out-of-sample performance
	Linear Discriminant Analysis
	K-Nearest Neighbours Classification
	Comparison of 1NN with the Bayes classifier

	Classification and Regression Trees (CART)
	Logistic Regression Classification

	Clustering (Unsupervised Learning)
	Measuring distances
	Hierarchical clustering
	K-Means Clustering
	Other Clustering Algorithms
	Combination of hierarchical and K-means clustering
	Model-based clustering

	Cluster stability
	Heatmaps and clustering to visualize big data

	Additional Topic: Kernel Methods (still ST323)
	Kernel Principal Component Analysis
	Kernel Mean Embeddings

	Advanced Topic (only ST412): Multidimensional Scaling
	Introduction
	Classical scaling (also called classical MDS)
	Beyond classical scaling
	Quality of the approximation and number of dimensions

