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X is is an RP valued random variable.

Factor Models aim to explain the correlation between variables via
a small number of k < p factors.

X=NF+U

° ( A ) is the loadings matrix of constants.
pxk

e Fis an R¥ valued random variable, called the factor.
— E[F]=0 Var(F) = I

® (Jis an RP valued random variable
— E[U]=0 Var(U) = W =diag(t11,- . ., %¥pp)

Cov(F,U)=0



Factor Model Recap

e Var(X) = A\T + W

e Var(X|F)=Ww

® |n lectures we used the iterated principal factor analysis
algorithm to estimate A and W from the correlation matrix R.
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If we make probabilistic assumptions for X and F we can then use
MLE estimates.

o X|F ~ Ny(AF, W)
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Objective

X ~ N(O,ANT + W)

Given a dataset X, where rows are i.i.d copies of X, we want to
estimate the parameters.

L(N, W, X) Zlog (xi;0,ANT + W)

No closed form solution for finding MLE estimates of W and A.
Can use the EM algorithm.



EM Algorithm

® The EM algorithm is a very general technique for finding MLE
solutions for probabilistic models with latent variables.

® | atent variables, Z, are variables that are not observed.

® EM algorithm is used in cases where direct optimisation of
L(8,X) := log(p(X;0)) is difficult, but the optimisation of
log(p(X,Z; 6)) is much easier.



EM Algorithm - Setup

e Complete-data likelihood p(X, Z; )
® Incomplete-data likelihood p(X; @)

We do not have the complete-data likelihood, so the idea is to
maximise its expectation instead.



EM Algorithm
e E-Step

Compute the latent variable posteriors p(z|x;; §°'4)

o M-Step

pnew — argmaxZ/p(Z]X;; 6?°|d) log p(x;, z; 0) dz
0 i-172

= arggnax Z E 7| x=x;004[log (p(xi, z; 0))]
i=1



EM Algorithm

The EM algorithm will increase the likelihood function L(6, X)

Let g(-) be a density over the latent variables Z. Then we can
decompose the likelihood for a single observed value as:

L(8,x) = L(q,0) + KL(qllp)
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The EM algorithm will increase the likelihood function L(6, X)

Let g(-) be a density over the latent variables Z. Then we can
decompose the likelihood for a single observed value as:

L(8,x) = L(q,0) + KL(qllp)

0= [ ateyoe {2557 | o
L(qllp) = /q {p(zyx)e)} dz



EM Algorithm
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EM Algorithm
L(0,x) = L(q,0) + KL(ql|p)

KL(q|lp) 20 = L(0,x) = L(q,0)

e E-Step
Fixing a starting value of the parameters §°¢, £(q, ) is maximised
with respect to g

argmax £(q, 0°) = p(z|x; 6°'9)
q

e M-Step
Now keeping g fixed and maximising with respect to 6

argmax £(q, 0)) = argmaxE z x.goa[log(p(x, z; 0))]
0 0



EM Steps for MLE of the Factor Model

Our model is constructed with a latent variable F, therefore we
can use the EM algorithm with F in place of Z.

o X|F ~ Ny(AF, W)
o [~ Nk(O,Ik)

E(HH)



EM Steps for MLE of the Factor Model
® E-Step  Compute p(Z;|X;; 0°)
pEx = KW+ ART)THX)
Trx = he— AT (W+ANT)TIA

e M-Step

A" = (Z E[F]T> (ZE[F FT]> B

i=1

yrew _ %diag {Z (X,-X,T - AnewE[F;]X;> }

i=1
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Derivation of EM steps for Factor Model
® E-Step  Compute p(Z;|X;; 0°)

Immediate from Gaussian identities

e M-Step

gnew — arg;nax Z Ez,ix;.g0¢ [log(p(Xi, Zi; 0)]
i=1

In our case we have that

p(Xi, Fi; 0) = p(Xi|Fi; 0)p(F;)

p(F;) does not depend on our parameters of interest.



Derivation of EM steps for Factor Model

Q= ZEF;\X;;6°'d[IOg(p(Xi‘Fi; 9)]
i=1

= 3o o (ory v op{ g - ARV A )

i=1
n
—c— Zlog|w
c 20g!!

n

1 1
-3 (X,Tw—lx,- ~ XTWIAE[F] + - [E[F,T/\T\u—lAF,-]D
2 2
i=1



M-Step

Now need to maximise with respect to § = (A, W)

0Q <~ 0 7y1 TATy—1
= aAX,\U AE[F]] — ZE[aAF,/\ VIAF;

(1) (2)

(1) =E[F](X v
(2) = (VU IARFT)T

Setting to zero we get:

A" = (i IE[F]T) (ZE[F FT]>

i=1



M-Step
oQ — Q\Unew
ow—t 2
_ Z <;XiX,'T _ I\newE[F;]XiT + ;AnewE[FiF’_T](AneW)T>
i=1

Setting to zero and plugging in A"¢V:

n

1 1
gwnew — Z <2XiX,'T _ 2AneWE[F,]X,>
i=1

Restricting to a diagonal matrix W:

ynew %diag {Z (x,-x,.T - I\neWE[F,-]X,-> }

i=1
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