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Factor Model Recap

X is is an Rp valued random variable.

Factor Models aim to explain the correlation between variables via
a small number of k < p factors.

X = ΛF + U

• Λ
(p×k)

is the loadings matrix of constants.

• F is an Rk valued random variable, called the factor.
− E[F ] = 0 Var(F ) = I k

• U is an Rp valued random variable

− E[U] = 0 Var(U) = Ψ = diag(ψ11, . . . , ψpp)

Cov(F ,U) = 0
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Factor Model Recap

• Var(X ) = ΛΛT +Ψ

• Var(X |F ) = Ψ

• In lectures we used the iterated principal factor analysis
algorithm to estimate Λ and Ψ from the correlation matrix R.
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Additional Assumptions

If we make probabilistic assumptions for X and F we can then use
MLE estimates.

• X |F ∼ Np(ΛF ,Ψ)

• F ∼ Nk(0, I k)

=⇒
(
F
X

)
∼ N

((
0
0

)
,

(
I k ΛT

Λ ΛΛT +Ψ

))

=⇒ X ∼ N(0,ΛΛT +Ψ)
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Objective

X ∼ N(0,ΛΛT +Ψ)

Given a dataset X, where rows are i.i.d copies of X , we want to
estimate the parameters.

L(Λ,Ψ,X) =
n∑

i=1

log(N(xi ; 0,ΛΛ
T +Ψ))

No closed form solution for finding MLE estimates of Ψ and Λ.
Can use the EM algorithm.
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EM Algorithm

• The EM algorithm is a very general technique for finding MLE
solutions for probabilistic models with latent variables.

• Latent variables, Z , are variables that are not observed.

• EM algorithm is used in cases where direct optimisation of
L(θ,X) := log(p(X; θ)) is difficult, but the optimisation of
log(p(X,Z; θ)) is much easier.
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EM Algorithm - Setup

• Complete-data likelihood p(X,Z;θ)

• Incomplete-data likelihood p(X;θ)

We do not have the complete-data likelihood, so the idea is to
maximise its expectation instead.
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EM Algorithm

• E-Step

Compute the latent variable posteriors p(z |xi ; θold)

• M-Step

θnew = argmax
θ

n∑
i=1

∫
z
p(z |xi ; θold) log p(xi , z ; θ) dz

= argmax
θ

n∑
i=1

EZ |X=xi ;θold [log(p(xi , z ; θ))]
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EM Algorithm

The EM algorithm will increase the likelihood function L(θ,X)

Let q(·) be a density over the latent variables Z. Then we can
decompose the likelihood for a single observed value as:

L(θ, x) = L(q, θ) + KL(q||p)

L(q, θ) =
∫
z
q(z)log

{
p(x , z ; θ)

q(z)

}
dz

KL(q||p) = −
∫
z
q(z)log

{
p(z |x ; θ)
q(z)

}
dz
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EM Algorithm

L(θ, x) = L(q, θ) + KL(q||p)

KL(q||p) ≥ 0 =⇒ L(θ, x) ≥ L(q, θ)

• E-Step

Fixing a starting value of the parameters θold, L(q, θ) is maximised
with respect to q

argmax
q

L(q, θold) = p(z |x ; θold)

• M-Step

Now keeping q fixed and maximising with respect to θ

argmax
θ

L(q, θ) = argmax
θ

EZ |X ;θold [log(p(x , z ; θ))]
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EM Steps for MLE of the Factor Model

Our model is constructed with a latent variable F , therefore we
can use the EM algorithm with F in place of Z .

• X |F ∼ Np(ΛF ,Ψ)

• F ∼ Nk(0, I k)

(
F
X

)
∼ N

((
0
0

)
,

(
I k ΛT

Λ Ψ+ ΛΛT

))
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EM Steps for MLE of the Factor Model

• E-Step Compute p(Zi |Xi ;θ
old)

µFi |Xi
= ΛT (Ψ+ ΛΛT )−1(Xi )

ΣFi |Xi
= I k − ΛT (Ψ+ ΛΛT )−1Λ

• M-Step

Λnew =

(
n∑

i=1

(Xi )E[Fi ]T
)(

n∑
i=1

E[FiFT
i ]

)−1

Ψnew =
1

n
diag

{
n∑

i=1

(
XiX

T
i − ΛnewE[Fi ]Xi

)}
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Derivation of EM steps for Factor Model

• E-Step Compute p(Zi |Xi ;θ
old)

Immediate from Gaussian identities

• M-Step

θnew = argmax
θ

n∑
i=1

EZi |Xi ;θ
old [log(p(Xi ,Zi ; θ)]

In our case we have that

p(Xi ,Fi ; θ) = p(Xi |Fi ; θ)p(Fi )

p(Fi ) does not depend on our parameters of interest.
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Derivation of EM steps for Factor Model

Q :=
n∑

i=1

EFi |Xi ;θ
old [log(p(Xi |Fi ; θ)]

=
n∑

i=1

E
[
log

(
(2π)p/2|Ψ|−1/2 exp

{
−1

2
[Xi − ΛFi ]

TΨ−1[Xi − ΛFi ]

})]
= c − n

2
log |Ψ|

−
n∑

i=1

(
1

2
XT
i Ψ−1Xi − XT

i Ψ−1ΛE[Fi ] +
1

2

[
E[FT

i ΛTΨ−1ΛFi ]
])
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M-Step

Now need to maximise with respect to θ = (Λ,Ψ)

∂Q

∂Λ
=

n∑
i=1

∂

∂Λ
XT
i Ψ−1ΛE[Fi ]︸ ︷︷ ︸

(1)

− 1

2

n∑
i=1

E
[ ∂

∂Λ
FT
i ΛTΨ−1ΛFi︸ ︷︷ ︸

(2)

]

(1) = E[Fi ](XT
i Ψ−1)

(2) = (2Ψ−1ΛFiF
T
i )T

Setting to zero we get:

Λnew =

(
n∑

i=1

(Xi )E[Fi ]T
)(

n∑
i=1

E[FiFT
i ]

)−1
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M-Step

∂Q

∂Ψ−1
=

n

2
Ψnew

−
n∑

i=1

(
1

2
XiX

T
i − ΛnewE[Fi ]X

T
i +

1

2
ΛnewE[FiF

T
i ](Λnew)T

)

Setting to zero and plugging in Λnew:

n

2
Ψnew =

n∑
i=1

(
1

2
XiX

T
i − 1

2
ΛnewE[Fi ]Xi

)
Restricting to a diagonal matrix Ψ:

Ψnew =
1

n
diag

{
n∑

i=1

(
XiX

T
i − ΛnewE[Fi ]Xi

)}
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