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1 Introduction

Linear algebra is part of almost every area of mathematics. It starts with solutions to
systems of linear equations, like

3z +by +7z = 8
r 4y 4z = 20,

but also includes many operations from geometry such as rotations and reflections,
and the structure of solutions to linear differential equations. Its influence ranges from
algebra, through geometry, to applied mathematics (with many detours through other
parts of mathematics!). Indeed, some of the oldest and most widespread applications
of mathematics in the outside world are applications of linear algebra.

In this module we will learn both the theory (vector spaces and linear transforma-
tions between them) and the practice (algorithms to deal with matrices), and (most
importantly) the connection between these.

Important: Lecture notes always have typos and places where they are not as
clear as possible. If you find a typo or do not understand something, post on the
module forum (available through Moodle). Even if the correction is obvious to you, it
may not be to someone else (or, indeed, to your future self!).

2 Matrix review

The material in this section will be familiar to many of you already.

Definition 2.1. An m x n matriz A over R is an m X n rectangular array of real
numbers. The entry in row ¢ and column j is often written a;;. We write A = (a;;) to
make things clear.

For example, we could take

2 -1 -7 0
m=3, n=4, A=(a;y)= 3 =32 0 6],
—-1.23 0 10% 0

and then a3 = —m, ags = 100, a3y = 0, and so on.

Having defined what matrices are, we want to be able to add them, multiply them
by scalars, and multiply them by each other. You probably already know how to do
this, but we will define these operations anyway.

Definition 2.2 (Addition of matrices). Let A = (a;;) and B = (b;;) be two m x n
matrices over R. We define A+ B to be the m xn matrix C' = (¢;;), where ¢;; = a;;+b;;

for all ¢, j.
13 n -2 =3\ _ (-1 -0
0 2 1 —-4) 1 =2)°

Definition 2.4 (Scalar multiplication of matrices). Let A = (a;;) be an m x n matrix
over R and let 8 € R. We define the scalar multiple SA to be the m x n matrix
C= (Cij)a where Cij = ,Baij for all Z,]

Example 2.3.

Definition 2.5 (Multiplication of matrices). Let A = (a;j) be an I X m matrix over
R and let B = (b;;) be an m x n matrix over K. The product AB is an [ X n matrix
C = (cij) where, for 1 <i<land 1< j <n,

m
Cij = Y Gigbrj = aibij + aigba; + - + Gimbm.
k=1


https://moodle.warwick.ac.uk/course/view.php?id=28524
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It is essential that the number m of columns of A is equal to the number of rows of B;
otherwise AB makes no sense.

If you are familiar with scalar products of vectors, note also that ¢;; is the scalar
product of the ith row of A with the jth column of B.

Example 2.6. Let

2 6
A—<234), B= (32
19

16 2
Then
AB — 2X243X3+4x1 2xX6+3x2+4x9\ (17 54
I Xx246x34+2%x1 1x64+6x24+2%x9) \22 36)°
10 42 20
BA=1[8 21 16
11 57 22
231
Let C = (6 9 9). Then AC and CA are not defined.
1 2 . 4 15 8
LetD-(O 1>. Then AD is not defined, but DA—<1 6 2).

Proposition 2.7. Matrices satisfy the following laws whenever the sums and products
imvolved are defined:

(i) A+ B=B+ A;

(ii) (A+ B)C = AC + BC};

(iii) C(A+ B)=CA+ CB;

(iv) (MA)B = A\(AB) = A(AB);

(v) (AB)C = A(BC).
Proof. These are all routine checks that the entries of the left-hand sides are equal to
the corresponding entries on the right-hand side. Let us do as an example.

Let A, B and C be l x m, m x n and n X p matrices, respectively. Then AB =

D = (d;j) is an I x n matrix with d;; = Y " | aisbsj, and BC' = E = (e;;) is an m X p
matrix with e;; = > " | birctj. Then (AB)C = DC and A(BC') = AE are both [ X p

matrices, and we have to show that their coefficients are equal. The (4, j)-coefficient
of DC is

n

n m m n m
E ditcrj = E ( g aisbst)cj = E s E bsicj) = E Ajs€sj
t=1 s=1 =1 s—1

t=1 s=1
which is the (i, j)-coefficient of AE. Hence (AB)C = A(BC). O
There are some useful matrices to which we give names.
Definition 2.8. The m x n zero matriz 0,,, has all of its entries equal to 0.

Definition 2.9. The n x n identity matriz I, = (a;;) has a; = 1 for 1 <i < n, but
a;; = 0 when 7 # j.
Example 2.10.
100
I = (1), 12:<(1) [1)) L=[010
001
B

Note that I,,A = A for any n X m matrix A and BI, = B for any m X n matrix B.
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3 Gaussian Elimination

3.1 Linear equations and matrices

The study and solution of systems of simultaneous linear equations is the main
motivation behind the development of the theory of linear algebra and of matrix
operations. Let us consider a system of m equations in n unknowns x1, Zo, ..., Ty,
where m,n > 1.

ai1ry + apre + -0+ aprn, = b
ao1x1 + agers + - + agpxTp, = by

(1)
Am1T1 + amax2 + - + AmpTn = bm

All coefficients a;; and b; belong to R. Solving this system means finding all
collections x1, xa,...,x, € R such that the equations hold.

Let A = (a;j) be the m x n matrix of coeflicients. The crucial step is to introduce
the column vectors

I bl

xT9 b2
X = and b=

In bm

This allows us to rewrite system as a single equation
Ax=Db (2)

where the coefficient A is a matrix, the right hand side b is a vector in R™ and the
unknown x is a vector in R™.

We will now discuss how to use matrices to solve equations. This allows us to
solve larger systems of equations (for example, using a computer).

3.2 Solving systems of linear equations

There are two standard high school methods for solving linear systems: the substitution
method (where you express variables in terms of the other variables and substitute the
result in the remaining equations) and the elimination method (sometimes called the
Gauss method). The latter is usually more effective, so we would like to contemplate
its nature. Let us recall how it is done.

Examples. Here are some examples of solving systems of linear equations by the
elimination method.

1.
2x+y=1 (1)
dr+2y =1 (2)
Replacing (2) by (2) — 2 x (1) gives 0 = —1. This means that there are no
solutions.
2.

20 +y=1 (1)
dr+y=1 (2)
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Replacing (2) by (2) — (1) gives 22 = 0, and so
x=0 (3)

Replacing (1) by (1) — 2 x (3) gives y = 1. Thus, (0, 1) is the unique solution.

2 +y=1 (1)
dr +2y =2 (2)

This time (2) — 2 x (1) gives 0 = 0, so (2) is redundant.

After reduction, there is no equation with leading term y, which means that y
can take on any value, say y = a. The first equation determines x in terms of y,
giving z = (1 — a)/2. So the general solution is (z,y) = (152, @), meaning that
for each o € R we find one solution (z,y). There are infinitely many solutions.
Notice also that one solution is (:U y) = (3,0), and the general solution can
be written as (z,y) = (3,0) + a(—3, 1), where a(—3,1) is the solution of the
corresponding homogeneous system 256 +y=0; 4z + 2y = 0.

4.
e+ y+ z=1 (1)
T + z = 2 (2)
T —y+ z=3 (3)
3r +y + 3z =5 (4)
Now replacing (2) by (2) — (1) and then multiplying by —1 gives y = —1.

Replacing (3) by (3) — (1) gives —2y = 2, and replacing (4) by (4) — 3 x (1)
also gives —2y = 2. So (3) and (4) both then reduce to 0 = 0, and they are
redundant.

The variable z does not occur as a leading term, so it can take any value, say «,
and then (2) gives y = —1 and (1) gives x =1 —y — z = 2 — @, so the general
solution is

(,y,2) = (2—a,—1,a) = (2,—-1,0) + a(—1,0,1).

3.3 Elementary row operations

Many types of calculations with matrices can be carried out in a computationally
efficient manner by the use of certain types of operations on rows and columns. We
shall see a little later that these are really the same as the operations used in solving
sets of simultaneous linear equations.

Let A be an m X n matrix with rows ri,re,...,r,,. The three types of elementary
row operations on A are defined as follows.

(R1) For some ¢ # j, add a multiple of r; to r;.

319 31 9
Example: |4 6 7 rammsTdn, oy g 7
258 -7 2 —19
(R2) Interchange two rows.
(R3) Multiply a row by a non-zero scalar.
2 0 5 2 0 5
Example: [1 —2 3] 2222 [4 —8 12

5 1 2 5o 1 2
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3.4 The augmented matrix

We would like to make the process of solving a system of linear equations more
mechanical by forgetting about the variable names w, x,y, z, etc. and doing the whole
operation as a matrix calculation. For this, we use the augmented matriz of the system
of equations, which is constructed by “gluing” an extra column on the right-hand
side of the matrix representing the linear transformation, as follows. For the system
Ax = b of m equations in n unknowns, where A is the m x n matrix (a;;), the
augmented matrix B is defined to be the m x (n + 1) matrix

a1 a2 -+ aip | b1

a1 a2 -+ G, | b2
B = } )

Gml Am2 *** Gmn | bm

The vertical line in the matrix is put there just to remind us that the rightmost column
is different from the others, and arises from the constants on the right hand side of
the equations.

Let us look at the following system of linear equations over R: suppose that we
want to find all w, x,y, z € R satisfying the equations.

2w - T+ 4y - 2= 1
w4+ 2r + y + z =

w — 3x + 3y — 2z = —1
3w — x — 5y = -3 .

Elementary row operations on B are doing the corresponding operations on the
corresponding linear system. Thus, the solution can be carried out mechanically as
follows:

Matrix Operation(s)

2 -1 4 -1 1

12 1 1| 2 1

1 -3 3 —2|-1 e
-3 -1 -5 0]|-3

1 =1 2 —1p| 1) ro — Ty — 11,
12 1 1] 2 e

1 -3 3 —2/-1 | WTBTI

-3 —1 -5 0l-3 ry — ry4+ 319

1 =12 2 =1/ 1/
0 5k —1 3R] 3k r3 — rs + ro,
0 =52 1 —3/2|-3/2 ry —ry+1ro
0 —5/2 1 =3/2| -3/

1 =1 2 —1p|1k
0 582 —1 32|32
0 0 O 0] 0
0 0 O 0] 0

ro — %1‘2
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Matrix Operation(s)

1 —1p 2 —1p|1/
0 1 =2/5 3/5(3/5
0 0 0 0] 0
0 0 0 0] 0

1
ry —ri+3ra

10 95 =14/
01 =255 35|35
00 0 0| O
00 0 0| O

The original system has been transformed to the following equivalent system, that
is, both systems have the same solutions.

w + y—%z:
x—gy+%z:

In a solution to the latter system, the variables y and z can take arbitrary values
in R; say y = «, z = 8. Then, the equations tell us that w = —%Ox + %5 + % and
x = %oz — %ﬂ + % (be careful to get the signs right!), and so the complete set of

solutions is

N Ol
[S{[SCRS N

(’lU,.'IZ‘7y7Z) = (_ga + 55_'_

2
)
4 3 9 2 1 3
=(=, 2 —Z 21 =, =20, 1).
<57 5’ 07 O>+a< 57 57 70)+/8<57 5? 07 >
3.5 Row reducing a matrix

Let A = (a;j) be an m x n matrix. For the ith row, let ¢(i) denote the position of the
first (leftmost) non-zero entry in that row. In other words, a; o;y # 0 while a;; = 0 for
all j < ¢(4). It will make things a little easier to write if we use the convention that
(i) = oo if the ith row is entirely zero.

We will describe a procedure, analogous to solving systems of linear equations by
elimination, which starts with a matrix, performs certain row operations, and finishes
with a new matrix in a special form. After applying this procedure, the resulting
matrix A = (a;;) will have the following properties.

(i) All zero rows are below all non-zero rows.

(ii) Let ry,...,rs be the non-zero rows. Then each r; with 1 < i < s has 1 as its
first non-zero entry. In other words, a; ;) = 1 for all i < s. These entries are
called the leading ones of the rows.

(iii) The first non-zero entry of each row is strictly to the right of the first non-zero
entry of the row above: that is, ¢(1) < ¢(2) < -+ < ¢(s).

Note that this implies that if row 7 is non-zero, then all entries below the first
non-zero entry of row ¢ are zero: ay ;) = 0 for all k > 1.

Definition 3.1. A matrix satisfying properties ({)—(ii) above is said to be in upper
echelon form.
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Example 3.2. The matrix we came to at the end of the previous example was in
upper echelon form.

We can also add the following property:

(iv) If row ¢ is non-zero, then all entries both above and below the first non-zero
entry of row ¢ are zero: ay ;) = 0 for all k # ¢.

Definition 3.3. A matrix satisfying properties f is said to be in row reduced
form.

An upper echelon form of a matrix will be used later to calculate the rank of a
matrix. The row reduced form (the use of the definite article is intended: this form
is, indeed, unique, though we shall not prove this here) is used to solve systems of
linear equations. In this light, the following theorem says that every system of linear
equations can be solved by the Gauss (Elimination) method.

Theorem 3.4. Every matriz can be brought to row reduced form by elementary row
transformations.

Proof. We describe an algorithm to achieve this. For a formal proof, we have to show:
(i) after termination the resulting matrix has a row reduced form;
(ii) the algorithm terminates after finitely many steps.

Both of these statements are clear from the nature of the algorithm. Make sure that
you understand why they are clear!

At any stage in the procedure we will be looking at the entry a;; in a particular
position (4, j) of the matrix. We will call (¢, j) the pivot position, and a;; the pivot
entry. We start with (¢, 7) = (1,1) and proceed as follows.

1. If a;; and all entries below it in its columns are zero (i.e. if ay; = 0 for all k& > i),
then move the pivot one place to the right, to (i,7 + 1) and repeat Step , or
terminate if j = n.

2. If a;; = 0 but ay; # 0 for some k > i then apply row operation (R2) to interchange
r; and ry.

3. At this stage a;; # 0. If a;; # 1, then apply row operation (R3) to multiply r; by
-1
a; -

4. At this stage a;; = 1. If, for any k # i, ag; # 0, then apply row operation (R1),
and subtract ay; times r; from ry.

5. At this stage, ay; = 0 for all k # 7. If i = m or j = n then terminate. Otherwise,
move the pivot diagonally down to the right to (i + 1,7 + 1), and go back to Step

O]

If one needs only an upper echelon form, this can done faster by replacing Steps
and [b| with weaker and faster steps as follows.

4a. At this stage a;; = 1. If, for any k > 4, ag; # 0, then apply (R1), and subtract
ayj times r; from ry.

5a. At this stage, ar; = 0 for all kK > 4. If i = m or j = n then terminate. Otherwise,
move the pivot diagonally down to the right to (i + 1,7 + 1), and go back to Step
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In the example below, we find an upper echelon form of a matrix by applying the
faster algorithm. The number in the ‘Step’ column refers to the number of the step
applied in the description of the procedure above.

001 2 1
242 —4 2
Example 3.5. Let A = 363 —6 3
123 3 3
Matrix Pivot Step Operation
001 2 1
242 —4 2
363 —6 3 (1,1) 2 ry <> Io
123 3 3
242 —4 2
001 2 1
363 —6 3 (1,1) 3 I‘1—>%I‘1
123 3 3
121 -21
001 2 1 r3 — r3 — 3rp
363 —63 (1,1) 4 ry —>r4—rg
123 3 3
121 -21
001 2 1
002 5 2
121 -21
001 2 1
000 O 0O (2,3) 4 1‘4%1‘4—21‘2
002 5 2
121 -21
001 2 1
000 0 0 (2,3)—>(3,4> 5, 2 r3 <> r4
000 1 O
121 -21
001 2 1
000 1 0 (3,4) — (4,5) —» stop 5,1
000 0 O

This matrix is now in upper echelon form.

The following theorem says that there the row reduced form of a matrix is unique,
so does not depend on the order in which we do row operations. The proof is not
examinable, but you are still encouraged to read and understand it.

Theorem 3.6. The row reduced form of an m X n matriz A is unique. In other words,
if B and B’ are two matrices in row reduced form that are obtained from a matriz B
by performing row operations, then B = B’.
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Proof. The proof is by induction on n. When n = 1, there are only two possible row
reduced forms: a;; = 0 for all ¢ > 1, and aqy is either 0 or 1. We have a1 = 0 if
and only if the original matrix is the zero matrix, so any m x 1 matrix has only one
possible row reduced form.

Now suppose that the theorem is true for smaller n, and let A’ be the m x (n — 1)
matrix obtained by deleting the last column from A. By induction the row reduced
form of A’ is unique. Note that any sequence of row operations that places A into row
reduced form also places A’ into row reduced form, so if B and C' are two row reduced
forms of A then they differ only in the last column. Row operations do not change the
set {x: Ax = 0}, so if Ax =0, then Bx = Cx =0, so (B — C)x = 0. Since the first
n — 1 columns of B and C are the same, if B # C' we must have x,, = 0 for all such x.
We claim that this implies that there is a leading one in the nth column of both B
and C'. Indeed, otherwise for every value of x,, we could find a solution to Bx = 0 by
setting x; = 0 if there is no leading one in the ith column. If there is a leading one in
the 7th column then the value of z; is determined by the equation corresponding to
the row it contains. The same is true for solutions to C'x = 0.

The leading one in the row above the leading one in the nth column is the last
leading one in the row reduced form of A’, so the leading one in the nth column must
occur in the row that is the first zero row of the row reduced form of A’ in both B
and C. Since every other entry in the column of a leading one is zero, this means that
B = C, and so the row reduced form of A is unique. O

3.6 Elementary column operations

In analogy to elementary row operations, one can introduce elementary column
operations. Let A be an m X n matrix with columns ¢y, co, ..., c, as above. The three
types of elementary column operations on A are defined as follows.

(C1) For some ¢ # j, add a multiple of ¢; to c;.

319 310
Example: |4 6 7| 2973 [4 6 5
258 25 2
(€2) Interchange two columns.
(C3) Multiply a column by a non-zero scalar.
2 0 5 2 0 5
Example: |1 —2 3 ool [ g3
5 1 2 5 4 2

Elementary column operations change a linear system and cannot be applied to
solve a system of linear equations. However, they are useful for reducing a matrix to
a very simple form.

Theorem 3.7. By applying elementary row and column operations, a matrix can be
brought into the block form
( Is ‘ Os,nfs >
Omfs,s Omfs,nfs ’

where, as in Section [, I denotes the s X s identity matriz, and Oy the k x 1 zero
matriz.
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Proof. First, use elementary row operations to reduce A to row reduced form.
Now all a; ;) = 1. We can use these leading entries in each row to make all the
other entries zero: for each a;; # 0 with j # c(i), replace ¢; with ¢; — ajjcq;).
Finally the only nonzero entries of our matrix are a; ;) = 1. Now for each number
i starting from ¢ = 1, exchange ¢; and c(;), putting all the zero columns at the
right-hand side. O

Definition 3.8. The matrix in Theorem [3.7 is said to be in row and column reduced
form. This is sometimes called Smith normal form.

Let us look at an example of the second stage of the procedure, that is, after
reducing the matrix to the row reduced form.

Matrix Operation
12001
00102 c2 — C2 — 2¢
00013 C5 — C5 — C1
00000
10000
00102 Co <> C3
00013 Cc; — C5 — 3¢4
00000
10000
01002 C3 <> C4
00010 C5—>C5—2C2
00000
10000
01000
00100
00000

We will see later that the number s that appears in Theorem is an invariant of
the matrix, so does not depend on the particular order that we apply elementary row
and column operations. The same is true for the row reduced form of the matrix.

4 Fields

Matrices make sense over more than just the real numbers.
We recall some of the most common alternative choices:

1. The natural numbers N = {1,2,3.4,...}.
In N, addition is possible but not subtraction; e.g. 2 — 3 ¢ N.

2. The integers Z ={...,—2,-1,0,1,2,3,...}.
In Z, addition, subtraction and multiplication are always possible, but not
division; e.g. 2/3 ¢ Z.

3. The rational numbers Q = {p/q | p,q € Z, q # 0}.

In Q, addition, subtraction, multiplication and division (except by zero) are all
possible. However, v/2 ¢ Q.
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4. The real numbers R. These are the numbers which can be expressed as decimals.
The rational numbers are those with finite or recurring decimals.

In R, addition, subtraction, multiplication and division (except by zero) are still
possible, and all positive numbers have square roots, but v/—1 & R.

5. The complex numbers C = {z + iy | z,y € R}, where i* = —1.

In C, addition, subtraction, multiplication and division (except by zero) are still
possible, and all, numbers have square roots. In fact all polynomial equations
with coefficients in C have solutions in C.

While matrices make sense in all of these cases, we will focus on the last three,
where there is a notion of addition, multiplication, and division.

4.1 Field axioms

We now give the axioms that are satisfied by R, Q, C.

Definition 4.1. A field is the data of a set S, two special elements 0 # 1 € S, and
two maps S x S — 5, called addition and multiplication, respectively satisfying the
following axioms. We write a 4 /3 for the result of applying the addition map («, 3),
and af for the result of applying the multiplication map to («, ).

Axioms for addition.

Al. a+f=FB+aforall a,f € S.

A2. (a+p8)+y=a+ (B+7~) forall a, 8,7 € S.

A3. There is a number 0 € § such that a +0=0+a =« for all « € S.

A4. For each number a € S there exists a number —« € S such that o + (—a) =
(—a) +a=0.

Axioms for multiplication.

Mil. a.5 =pB.aforall a,B € S.

M2. (a.f8).y = a.(B8.y) for all a, B,y € S.

M3. There is a number 1 € S such that .1 =l.a=«aforall a € S.

M4. For each number a € S with a # 0, there exists a number o' € S such that
aat=ala=1.

Axiom relating addition and multiplication.
D. (a+p)y=a~y+ p.yforal o, 8,7 € S.

Roughly speaking, S' is a field if addition, subtraction, multiplication and division

(except by zero) are all possible in S. We shall always use the letter K for a general
field.

Example 4.2. N and Z are not fields, but Q, R and C are all fields.
In N, Al and A2 hold but A3 and A4 do not hold. A1-A4 all hold in Z.
In N and Z, M1-M3 hold but M4 does not hold
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There are many other fields, including some finite fields. For example, for each
prime number p, there is a field F, = {0,1,2,...,p — 1} with p elements, where
addition and multiplication are carried out modulo p. Thus, in F7, we have 5 + 4 = 2,
5x4=6and 57! = 3 because 5 x 3 = 1. The smallest such field Fy has just two
elements 0 and 1, where 1 4+ 1 = 0. This field is extremely important in Computer
Science since an element of Fo represents a bit of information.

Various other familiar properties of numbers, such as Oa =0, (—a)8 = —(af) =
a(=0), (—a)(=B) = aB, (—1)a = —a, for all a, f € S, can be proved from the axioms.
Why would we want to do this, when we can see they’re true anyway? The point is
that, when we meet a new number system, it is enough to check whether the axioms
hold; if they do, then all these properties follow automatically.

However, occasionally you need to be careful. For example, in Fy we have 1+1 = 0,
and so it is not possible to divide by 2 in this field.

Matrices are defined over any field K. In addition, Gaussian elimina-
tion, and our methods to solve equations, work over any field! Check!!!

We denote the set of all m X n matrices over K by K™". Two special cases of
matrices have special names. A 1 X n matrix is called a row vector. An n x 1 matrix
is called a column vector. In matrix calculations, we use K™! more often than K1"™.

5 Vector spaces

Definition 5.1. A vector space over a field K is a set V which has two basic operations,
addition and scalar multiplication, satisfying certain requirements. Thus for every
pair u,v € V, u+v € V is defined, and for every a € K, av € V is defined. For V
to be called a vector space, the following axioms must be satisfied for all o, 8 € K
and all u,v € V.

(i) Vector addition satisfies axioms A1, A2, A3 and A4.

(i) a(u+v) =au+ av;

(iv) (af)v = a(Bv);

)
i)

(iii) (a+B)v =av+fv;
)

(v) 1

Elements of the field K will be called scalars. Note that we will use boldface
letters like v to denote vectors. The zero vector in V' will be written as Oy, or usually
just 0. This is different from the zero scalar 0 = 0 € K.

For nearly all results in this module, there is no loss in assuming that K is the
field R of real numbers. So you may assume this if you find it helpful to do so. Just
occasionally, we will need to assume K = C the field of complex numbers.

However, it is important to note that nearly all arguments in Linear Algebra use
only the axioms for a field and so are valid for any field, which is why we shall use a
general field K for most of the module.

5.1 Examples of vector spaces

1. K" = {(a1,09,...,ay) | oy € K}. This is the space of row vectors. Addition
and scalar multiplication are defined by the obvious rules:

(a17a27'--)an) + (ﬁlvﬁQa"'aﬁn) — (Oé]_ +ﬁlaa2 +/825"'7an+6n);
AMag,ag, ..., an) = (Aag, Aag, ..., Aay).
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The most familiar examples are
R*={(z,y) |z,y €R} and R’={(z,y,2)|z,y,2 €R},

which we can think of geometrically as the points in ordinary 2- and 3-dimensional
space, equipped with a coordinate system.

Vectors in R? and R? can also be thought of as directed lines joining the origin
to the points with coordinates (z,y) or (z,y, 2).

/////////////////’///,—(x7y)
0 =(0,0)

Addition of vectors is then given by the parallelogram law.

V1 + Vo

A&
Vi
0
Note that K! is essentially the same as K itself.

2. The set K™™ of all m x n matrices is itself a vector space over K using the
operations of addition and scalar multiplication.

3. Let K[z] be the set of polynomials in an indeterminate = with coefficients in
the field K. That is,

Klz]={ap+ a1z + -+ apz" | n>0,0; € K}.
Then K|z] is a vector space over K.

4. Let K|x]<, be the set of polynomials over K of degree at most n, for some
n > 0. Then K[z]<, is also a vector space over K; in fact it is a subspace of

K[z] (see §[7).
Note that the polynomials of degree exactly n do not form a vector space. (Why
not?)

5. Let K =R and let V' be the set of n-times differentiable functions f: R - R
which are solutions of the differential equation
arf

dz™

dn—lf
dmnfl

d
_|_..._|_)\n_17f+)\nf:0'
dx

Ao + A1
for fixed Ao, A1,...,A\p € R. Then V is a vector space over R, for if f(z) and
g(x) are both solutions of this equation, then so are f(z) + g(z) and af(z) for
all € R.

6. The previous example is a space of functions. There are many such examples
that are important in Analysis. For example, the set C*((0,1),R), consisting
of all functions f: (0,1) — R such that the kth derivative f*) exists and is
continuous, is a vector space over R with the usual pointwise definitions of
addition and scalar multiplication of functions.

7. A vector in F§ is a byte in computer science.
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Facing such a variety of vector spaces, a mathematician wants to derive useful
methods of handling all these vector spaces. If we work out techniques for dealing
with a single example, say R?, how can we be certain that our methods will also
work for R® or even C8? That is why we use the aziomatic approach to developing
mathematics. We must use only arguments based on the vector space axioms. We
have to avoid making any other assumptions. This ensures that everything we prove
is valid for all vector spaces, not just the familiar ones like R3.

We shall be assuming the following additional simple properties of vectors and
scalars from now on. They can all be deduced from the axioms (and it is a useful
exercise to do so).

(i

)
(i) Ov =0 for all v € V;
)
)

a0 =0 for all o € K;

(iii) —(av) = (—a)v=a(—v), forall a € K and v € V;

(iv) if av =0, then a =0 or v=0.

6 Linear independence, spanning and bases of vector
spaces

6.1 Linear dependence and independence

Let V be a vector space over a field K and let vy, ..., v, be vectors in V.
Definition 6.1. A linear combination of vi,vs,..., Vv, is a vector of the form a;vi +
aoVy + -+ + ap vy, for aq, e, ..., a, € K.

If vi,..., v, are vectors in a vector space V', then we refer to the linear combination

Ovy +---+0v, = 0 as the trivial linear combination. A non-trivial linear combination
is, therefore, a linear combination a3 vy + asve + - - - + oy, Vi, Wwhere not all coefficients
Qai,...,an are zero. The trivial linear combination always equals the zero vector; a
non-trivial linear combination may or may not be the zero vector.

Definition 6.2. Let V be a vector space over the field K. The vectors vq,...,v, € V
are linearly dependent if there is a non-trivial linear combination of vi,..., v, that
equals the zero vector. The vectors vi,..., v, are linearly independent if they are not
linearly dependent. A set S C V is linearly independent if every finite subset of .S is
linearly independent.

Equivalently, the vectors vi,va,..., v, are linearly dependent if there exist scalars
ay, a9, ...,0, € K, not all zero, such that

ai1vy + agvo 4+ - -+ a, v, = 0.

The vectors vi,va,..., Vv, are linearly independent if the only scalars aq, s, ..., an €
K that satisfy the above equation are a; =0, ag =0, ..., a, = 0.

Example 6.3. Let V = R2, v; = (1,3), vo = (2,5). A linear combination of vy, v is
a vector of the form ajv] + agve = (a1 + 22, 31 + 5ag). Such a linear combination
is equal to 0 = (0, 0) if and only if a1 + 2a3 = 0 and 3o + 5ay = 0. Thus, we have a
pair of simultaneous equations in a1, g and the only solution is a; = ag = 0, so vy,
vy are linearly independent.

Example 6.4. Let V = Q?, vi = (1,3), vo = (2,6). This time, the equations are
a1 4 2a0 = 0 and 3 + 6ag = 0, and there are non-zero solutions, such as oy = —2,
az =1, and so vy, vy are linearly dependent.
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Lemma 6.5. The vectors vi,vo,...,v, € V are linearly dependent if and only if
either vi = 0 or, for some r, the vector v, s a linear combination of vi,...,V,_1.

Proof. If vi = 0, then by putting a; = 1 and o; = 0 fori > 1 we get a1 v+ -+ay, vy, =
0, so vi,va,...,v, € V are linearly dependent.

If v, is a linear combination of vi,...,v,_1, then v, = ay3vy + -+ 4+ a,_1v,_1 for
some «i,...,a,—1 € K and so we get a;vi + -+ 4+ ap—1v,—1 — 1 v, = 0 and again
Vi,...,Vvy € V are linearly dependent.

Conversely, suppose that vi,va,...,v, € V are linearly dependent, and ay, ..., ay,
are scalars, not all zero, satisfying a1vy + agvs + - - - + @, vy, = 0. Let r be maximal
with o, # 0; then ayvy +agva+ -+ -+ a,v, = 0. If r = 1 then a3 vy = 0 which, by
above, is only possible if vi = 0. Otherwise, we get

] Oy 1
Vp = ——"V] — "+ — Vy_1.

Oy Q
In other words, v, is a linear combination of vi,...,v,_1. O
Corollary 6.6. Let vq,...,v,, be vectors in K™. The vectors vi,...,v, are linearly
independent if and only if the row reduced form of the n x m matrixz with columns
V1,...,Um has a leading one in every column. In particular, a linearly independent
subset of K™ has size at most n.
Proof. We denote by A the n x m matrix with columns vy, ...,v,;,. The collection
of vectors vi,..., vy, is linearly independent if and only if the system of equations

Ax = 0 has only the trivial solution x = 0. Let A’ be the augmented matrix for this
system; this is A with the extra column 0 added. The row reduced form of A’ is the
row reduced form of A with the extra column 0 added, as any row operation on A’
does not change the last column. There is thus no row (0]1) in the row reduced form
of A’, so the system has a solution (technically we already knew this, since x = 0 is a
solution). To obtain a solution x to the system, we choose any value for the variables
x; for which the ith column of the row reduced form of A does not contain a leading
one, and then use the jth row of the row reduced form to solve for z(;). There is
thus a nonzero solution to this system unless every column of the row reduced form
contains a leading one, which happens if and only if ¢(i) =i for 1 <i < m. O

6.2 Spanning vectors

Definition 6.7. A subset S C V spans V if every vector v € V is a finite linear
combination ayvy + agvy + -+ - + ap vy with vq, ..., v, € 5.

Note that while the set S may be infinite, the linear combination must have only
a finite number of terms.

If V = K™, we can write vy, ..., v, as the columns of an m x n matrix A. The set
{v1,...,vn} spans K™ if and only if for every vector b € K" the system of equations
Ax=Db

has a solution x € K™. Here z; = «;.

Corollary 6.8. A collection v1,...,v, of vectors in K™ spans K™ if and only if the
row reduced form of the n X m matrix A with columns vi,...,Vy, has no zero rows.
In particular, a spanning set for K™ has size at least n.

Proof. The vectors vq,..., vy, span K" if and only if the system of equations

Ax=Db
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has a solution for all right-hand side vectors b. To determine if this has a solution for
a given b, we form the n x (m+ 1) augmented matrix (A|b), and row reduce this. The
system has a solution if and only if there is no row in the row reduced form of this
augmented matrix of the form (0[1). The operations to put the augmented matrix
into row reduced form also put A into row reduced form, so if there is a row of the
form (0|1), then the row reduced form of A has a zero row. Conversely, if the row
reduced form of A has a zero row, then the corresponding row of the row reduced
form of the augmented matrix has the form (0[¢(b)), where ¢(b) is a linear function
of the entries of b: £(b) = >""" | a;b;.

We claim that ¢ is not the zero function, so «; # 0 for at least one 1 < ¢ < n. To
see this, we consider the Gaussian elimination algorithm more carefully, to the point
that the matrix is put in upper echelon form (so we restrict ourselves to switching
rows, multiplying rows by nonzero scalars, and adding a multiple of a row to a row
below it). We will call the row that starts as the ith row the “original ith row” (even
if it has been switched with another row, so is no longer the ith row). Note that at
the start, the coefficient of b; in the linear form for the original ¢th row is 1. The
coefficient of b; in a row other than the original ith row will only become nonzero if
the original ith row has its first nonzero entry as the pivot position at some point
in the algorithm, after which multiples of this row (and thus of b;) may be added to
lower rows. This means that if the original ith row becomes a zero row at some point
in the algorithm, the coefficient of b; is 1 in the linear form. As this row is not touched
in the remainder of the algorithm to move from upper echelon form to row reduced
form, we conclude that the coefficient of b; in £ is 1, so £ # 0. We can then choose b
with ¢(b) # 0, so the row reduced form will have the row (0|1), and so the system
will have no solutions.

The last sentence follows because the row reduced form of matrix with more rows
than columns always has a zero row. O

Example 6.9. Consider the vectors vi = (1,2,5), vo = (3,—1,1), and v3 = (7,2,11).
The augmented matrix, with b undetermined, is

b1
2
3

=

1 3 7
2 -1 2
5 111

S

This has row reduced form (check!)

1 0 13/7| 1/7by + 3/7bs
0 1 12/7| 2/7by —1/7bs
00  0|—by—2by+bs

The function ¢(b) of the proof of Corollary is then —by — 2by + b3. This shows, for
example, that b = (1,0,0) is not in the span of vi, v, vs, as £((1,0,0)) = —1 # 0.

6.3 Bases of vector spaces

Definition 6.10. A subset S C V is a basis of V if S is linearly independent, and
spans V. If the basis S is finite we also choose an ordering of its vectors, and write

S={vi,...,vn}.

Proposition 6.11. The vectors vi,...,v, form a basis of V if and only if every
v € V can be written uniquely as v .= a1vy + - -+ + anVy; that is, the coefficients
Qai, ..., an are uniquely determined by the vector v.

Proof. Suppose that vq,...,v, form a basis of V. Then they span V, so certainly
every v € V can be written as v = ajvy + agve + - - - + a, v, Suppose that we also
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had v = pB1vq1 + Bovy + - - - + B, v, for some other scalars §5; € K. Then we have
O0=v-—v=_(oq—p1)vi+ (a2 —B2)va+ -+ (an — Bn)Vn

and so
(1 = B1) =(ae—Pa) =+ = (an—Bn) =0

by linear independence of vy, ...,v,. Hence o; = ; for all ¢, which means that the
«; are uniquely determined.

Conversely, suppose that every v € V can be written uniquely as v = ajvy +
Qv+ -+ a,v,. Then vy, ..., v, certainly span V. If ayvi +agve+---4+a,v, =0,
then

arvi+agve + -+ apvy =0vi +0va + -+ 0vy

and so the uniqueness assumption implies that oy = as =--- =, =0, and vy, ..., v,
are linearly independent. Hence vy, ..., v, form a basis of V. ]

Corollary 6.12. The vectors vi,...,vy in K™ form a basis for K™ if and only if
the row reduced form of the matriz A with columns v1,...,v,, is the identity matriz.
In particular, every basis of K™ has size n.

Proof. The vectors vy, ..., vy, form a basis for K" if and only if they are linearly
independent and span K". By Corollaries and this occurs if and only if the
row reduced form of A has a leading one in every column, and has no zero rows, so
n <m, and c(i) =i for 1 <1i <m, so m < n. Since the rest of the ¢(i)th column is
zero, the only nonzero entries of this row reduced form are on the diagonal, and these

entries are one, so the row reduced form is the identity matrix. O
Definition 6.13. The scalars aq, ..., ay in the statement of the proposition are called
the coordinates of v with respect to the basis vi,...,v,.

With respect to a different basis, the same vector v will have different coordinates.
A basis for a vector space can be thought of as a choice of a system of coordinates.

Example 6.14. Here are some examples of bases of vector spaces.

1. (1,0) and (0,1) form a basis of K2. This follows from Proposition because
each element (ai,az) € K? can be written as a1(1,0) + a2(0,1), and this
expression is clearly unique.

2. Similarly, the three vectors (1,0,0), (0,1,0), (0,0,1) form a basis of K3, the
four vectors (1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1) form a basis of K* and
so on. More precisely, for n € N, the standard basis of K™ is v1,...,Vv,, where
v; is the vector with a 1 in the ¢th position and a 0 in all other positions.

3. There are many other bases of K™. For example (1,0),(1,1) form a basis of K2,
because (a1, a2) = (a1 — a2)(1,0) + a2(1,1), and this expression is unique. In
fact, any two non-zero vectors such that one is not a scalar multiple of the other
form a basis for K?2.

4. Not every vector space has a finite basis. For example, let K[z] be the vector
space of all polynomials in x with coefficients in K. Let pi(z),...,pn(x) be
any finite collection of polynomials in K[x]. If d is the maximum degree of
p1(x),...,pn(z), then any linear combination of p;(x), ..., p,(z) has degree at
most d, and so pi(z),...,pp(x) cannot span K[z]. On the other hand, the

infinite sequence of vectors 1,z,x2 2%,..., 2", ... is a basis of K[z].
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A vector space with a finite basis is called finite-dimensional. In fact, nearly all of
this module will be about finite-dimensional spaces, but it is important to remember
that these are not the only examples. The spaces of functions mentioned in Example 0]
of Subsection typically have bases of uncountably infinite cardinality.

In the rest of this section we show that when a vector space has a finite basis,
every basis has the same size.

Theorem 6.15 (The basis theorem). Suppose that vi,...,vy and wi,..., W, are
both bases of the vector space V.. Then m =n. In other words, all finite bases of V
contain the same number of vectors.

The proof of this theorem is quite tricky and uses the concept of sifting which we
introduce after the next lemma.

Definition 6.16. The number n of vectors in a basis of the finite-dimensional vector
space V is called the dimension of V and we write dim(V) = n.

Thus, as we might expect, K™ has dimension n. K|[x] is infinite-dimensional, but
the space K[z]|<, of polynomials of degree at most n has basis 1, z, 2, ..., z", so its
dimension is n + 1 (not n).

Note that the dimension of V' depends on the field K. Thus the complex numbers
C can be considered as

e a vector space of dimension 1 over C, with one possible basis being the single
element 1;

e a vector space of dimension 2 over R, with one possible basis given by the two
elements 1, 4;

e a vector space of infinite dimension over Q.

The first step towards proving the basis theorem is to be able to remove unnecessary
vectors from a spanning set of vectors.

Lemma 6.17. Suppose that the vectors vi,va,..., vy, W span V and that w is a
linear combination of vi,...,vy,. Then vi,..., vy, span V.

Proof. Since vi,vs,...,v,, w span V, any vector v € V can be written as
v=a1vi+-+apv, + Bw,

But w is a linear combination of vy,...,v,, so w = y1vy + - - -+ y,V, for some scalars
v;, and hence
v = (a1 + By)vi+ -+ (4 Bym) Vi

is a linear combination of vq,...,v,, which therefore span V. O

There is an important process, which we shall call sifting, which can be applied to
any sequence of vectors vi,va,..., Vv, in a vector space V, as follows. We consider
each vector v; in turn. If it is zero, or a linear combination of the preceding vectors
V1i,...,Vi_1, then we remove it from the list.

Example 6.18. Let us sift the following sequence of vectors in R3.
vi = (0,0,0) ve = (1,1,1) vy = (2,2,2) vy = (1,0,0)
v = (3,2,2) ve = (0,0,0) vy =(1,1,0) vg = (0,0,1)

vi = 0, so we remove it. vg is non-zero so it stays. vy = 2vg so it is removed. vy
is clearly not a linear combination of va, so it stays.
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We have to decide next whether v is a linear combination of vo, v4. If so, then
(3,2,2) = a1(1,1,1) + a2(1,0,0), which (fairly obviously) has the solution a; = 2,
as = 1, so remove vs. Then vg = 0 so that is removed too.

Next we try vz = (1,1,0) = a3(1,1,1) + a2(1,0,0), and looking at the three
components, this reduces to the three equations

1 =oa1+ as; 1 =ay; 0=a.

The second and third of these equations contradict each other, and so there is no
solution. Hence v7 is not a linear combination of v, v4, and it stays.
Finally, we need to try

vg = (0,0,1) = ay(1,1,1) + a2(1,0,0) + a3(1,1,0)
leading to the three equations
O=a;+azs+as 0=a1 +as; 1=

and solving these in the normal way, we find a solution a; = 1, a0 = 0, a3 = —1. Thus
we delete vg and we are left with just vo, vy, vy.

Of course, the vectors that are removed during the sifting process depends very
much on the order of the list of vectors. For example, if vg had come at the beginning
of the list rather than at the end, then we would have kept it.

The idea of sifting allows us to prove the following theorem, stating that every
finite sequence of vectors which spans a vector space V' actually contains a basis for V.

Theorem 6.19. Suppose that the vectors vi,...,v, span the vector space V. Then
there is a subsequence of vi,...,v, which forms a basis of V.
Proof. We sift the vectors vi,...,v,. The vectors that we remove are linear combina-

tions of the preceding vectors, and so by Lemma the remaining vectors still span
V. After sifting, no vector is zero or a linear combination of the preceding vectors (or
it would have been removed), so by Lemma the remaining vectors are linearly
independent. Hence they form a basis of V. 0

The theorem tells us that any vector space with a finite spanning set is finite-
dimensional, and indeed the spanning set contains a basis. We now prove the dual
result: any linearly independent set is contained in a basis.

Theorem 6.20. Let V' be a vector space over K which has a finite spanning set, and

suppose that the vectors vi,..., v, are linearly independent in V. Then we can extend

the sequence to a basis v1,...,vy, of V, where n > r.

Proof. Suppose that wy,...,w, is a spanning set for V. We sift the combined sequence
Vi, Vi Wi, o, W

Since w1, ..., wy span V, the whole sequence spans V. Sifting results in a basis for V'

as in the proof of Theorem Since vi, ..., v, are linearly independent, none of
them can be a linear combination of the preceding vectors, and hence none of the v;
are deleted in the sifting process. Thus the resulting basis contains vy, ..., v,. O

Example 6.21. The vectors vi = (1,2,0,2),vy = (0,1,0,2) are linearly independent
in RY. Let us extend them to a basis of RY. The easiest thing is to append the
standard basis of R?*, giving the combined list of vectors

V1 = (172707 2)7 Vo = (07 1707 2)7 Wi = (1707070))



22 2017-18

wy = (0,1,0,0), w3 = (0,0,1,0), wy = (0,0,0,1),

which we shall sift. We find that (1,0,0,0) = a1(1,2,0,2) + a2(0,1,0,2) has no
solution, so wi stays. However, wo = vi — vo — w1 so wy is deleted. It is clear that
w3 is not a linear combination of vi, v, wq, because all of those have a 0 in their
third component. Hence w3 remains. Now we have four linearly independent vectors;
if we had proved Theorem [6.15] then we would know that they form a basis and we
would stop the sifting early. We leave you to check that indeed the remaining two
vectors get removed by sifting. The resulting basis is

V1= (1>2’07 2)a Vo = (07 1’0’ 2)a Wi = (1707070)7 W3 = (0703 ]-30)

We are now ready to prove Theorem [6.15] Since bases of V' are both linearly
independent and span V', the following proposition implies that any two bases contain
the same number of vectors.

Proposition 6.22 (The exchange lemma). Suppose that vectors vi,..., vy span V
and that vectors w1, ..., Wy, € V are linearly independent. Then m < n.

Proof. The idea is to place the w; one by one in front of the sequence vi,..., vy,
sifting each time.

Since vi,...,vy, span V|, wi,vy,..., Vv, are linearly dependent, so when we sift,
at least one v is deleted. We then place wy in front of the resulting sequence and sift
again. Then we put ws in from of the result, and sift again, and carry on doing this
for each w; in turn. Since why, ..., w,, are linearly independent none of them are ever
deleted. Each time we place a vector in front of a sequence which spans V', and so the
extended sequence is linearly dependent, and hence at least one v; gets eliminated
each time.

But in total, we append m vectors w;, and each time at least one v; is eliminated,
so we must have m < n. O

Corollary 6.23. Let V be a vector space of dimension n over K. Then any n vectors
which span V' form a basis of V', and no n — 1 vectors can span V.

Proof. After sifting a spanning sequence as in the proof of Theorem the remaining
vectors form a basis, so by Theorem there must be precisely n = dim(V") vectors
remaining. The result is now clear. O

Corollary 6.24. Let V be a vector space of dimension n over K. Then any n linearly
independent vectors form a basis of V. and no n+ 1 vectors can be linearly independent.

Proof. By Theorem [6.20] any linearly independent set is contained in a basis but by
Theorem there must be precisely n = dim(V') vectors in the extended set. The
result is now clear. O

6.4 Existence of a basis

Although we have studied bases quite carefully in the previous section, we have not
addressed the following fundamental question. Let V' be a vector space. Does it
contain a basis?

Theorem [6.19 gives a partial answer that is good for many practical purposes. Let
us formulate it as a corollary.

Corollary 6.25. If a non-trivial vector space V is spanned by a finite number of
vectors, then it has a basis.

In fact, if we define the idea of an infinite basis carefully, then it can be proved
that any vector space has a basis. That result will not be proved in this course. Its
proof, which necessarily deals with infinite sets, requires a subtle result in axiomatic
set theory called Zorn’s lemma.
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7 Subspaces

Let V' be a vector space over the field K. Certain subsets of V' have the nice property
of being closed under addition and scalar multiplication; that is, adding or taking
scalar multiples of vectors in the subset gives vectors which are again in the subset.
We call such a subset a subspace:

Definition 7.1. A subspace of V is a non-empty subset W C V such that
(i) W is closed under addition: u,v e W =u+v e W,
(ii) W is closed under scalar multiplication: ve W, a € K = av e W.

These two conditions can be replaced with a single condition
u,veWa e K=au+pveW

A subspace W is itself a vector space over K under the operations of vector
addition and scalar multiplication in V. Notice that all vector space axioms of W
hold automatically. (They are inherited from V'.)

Example 7.2. The subset of R? given by
W = {(a,B) € R? | B =2a},

that is, the subset consisting of all row vectors whose second entry is twice their first
entry, is a subspace of R%. You can check that adding two vectors of this form always
gives another vector of this form; and multiplying a vector of this form by a scalar
always gives another vector of this form.

For any vector space V', V is always a subspace of itself. Subspaces other than V'
are sometimes called proper subspaces. We also always have a subspace {0} consisting
of the zero vector alone. This is called the trivial subspace, and its dimension is 0,
because it has no linearly independent sets of vectors at all.

Intersecting two subspaces gives a third subspace:

Proposition 7.3. If W1 and Wy are subspaces of V' then so is W1 N Wa.

Proof. Let u,v € Wi NW; and a € K. Then u+ v € W (because W is a subspace)
and u+ v € Wy (because W is a subspace). Hence u+ v € Wi N Ws. Similarly, we
get av € W1 N Wy, so W1 N Wy is a subspace of V. ]

Warning! It is not necessarily true that W7 U Wy is a subspace, as the following
example shows.

Example 7.4. Let V = R? let Wi = {(a,0) | « € R} and Wa = {(0,a) | « € R}.
Then W7, Wy are subspaces of V', but W3 UWsj is not a subspace, because (1,0), (0,1) €
W1 U Wy, but (1,0) + (0,1) = (1,1) &€ Wy U Wha.

Note that any subspace of V' that contains W; and W5 has to contain all vectors
of the form u + v for u € Wy, v € Ws. This motivates the following definition.

Definition 7.5. Let Wy, W5 be subspaces of the vector space V. Then Wy + Wy is
defined to be the set of vectors v € V such that v = wy +wy for some wy € Wy, wy €
Ws. Or, if you prefer, Wi + Wy = {w1 + wa | w1 € W1, wy € Wa}.

Do not confuse Wy + Wy with Wy U Wa.

Proposition 7.6. If Wi, Wy are subspaces of V' then so is Wy + Wa. In fact, it is
the smallest subspace that contains both W1 and Ws.
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Proof. Let u,v.€ W7 + Ws. Then u = u; + us for some u; € Wy, ug € Wy and
v = vi+vy for some v € Wy, vo € Wa. Then u+v = (u;+vy)+(ug+vs) € Wi+Wa.
Similarly, if € K then av = avy + avy € Wi + Wy, Thus Wi + W is a subspace of
V.

Any subspace of V' that contains both Wy and W5 must contain W7 + Ws, so it is
the smallest such subspace. ]

Theorem 7.7. Let V be a finite-dimensional vector space, and let W1, Wo be subspaces
of V. Then

dim(W1 + WQ) = dim(Wl) + dim(Wg) — dim(W1 N WQ).

Proof. First note that any subspace W of V is finite-dimensional. This follows from
Corollary because a largest linearly independent subset of W contains at most
dim(V') vectors, and such a subset must be a basis of W.

Let dim(W7, N Wy) = r and let eq,..., e, be a basis of Wi N Ws. Then ey, ..., e,
is a linearly independent set of vectors, so by Theorem [6.20]it can be extended to a
basis e1, ..., e, f1,...,fs of Wi where dim(W) = r + s, and it can also be extended
to a basis e1,...,e,, g1,...,8 of Wy, where dim(Ws3) = r + ¢.

To prove the theorem, we need to show that dim(W; + Wa) = r + s+ ¢, and to do
this, we shall show that

el)"'ae'r‘)fla‘"7f87g17"')gt

is a basis of W1 4+ W5, Certainly they all lie in Wy + Wh.
First we show that they span W7 + Ws. Any v € W7 4+ Wy is equal to w1 + wo
for some wq € Wy, wy € Ws. So we can write

w1 =aie + -+ e + Sify + -+ Bty
for some scalars oy, 3; € K, and
wy =71€1+ -+ e+ 0181+ + 08t
for some scalars ;,d; € K. Then
v=(art+y)er+ -+ (ar +y)er + Bifi + o+ Bofs + 181 + -+ duge

and so eq,...,e. f1,... f5,g1,...,8 span Wy 4+ Wa.
Finally we have to show that e;,...,e., f1,....fs,81,...,g are linearly indepen-
dent. Suppose that

arer + -t ape, + Pifi + -+ Sofs + 0181+ + 08 =0
for some scalars o, 3,0, € K. Then
arer + -+ ape + Sifi + -+ Bsfs = 0181 — - — dge (*)

The left-hand side of this equation lies in W7 and the right-hand side of this equation
lies in Ws. Since the two sides are equal, both must in fact lie in W7 N W5. Since
e1,...,e. is a basis of Wy N Ws, we can write

—0181 — - — 018t = me1+ -+ ey
for some v; € K, and so

vier+ -+ vrer + 0181+ -+ 68 =0.
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But, eq,...,e.,g1,...,8 form a basis of Wy, so they are linearly independent, and
hence v; = 0 for 1 <4 <r and §; =0 for 1 <7 <¢. But now, from the equation (%)
above, we get

alel‘i‘""i‘arer_‘_ﬁlfl+"'+ﬂsfs =0.

Now eq,...,e., f;,...,f; form a basis of Wi, so they are linearly independent, and
hence a; =0 for 1 <i<rand g;=0for 1 <i<s. Thusey, ..., e, f, ..., s, g1,

.., g are linearly independent, which completes the proof that they form a basis of
W1 + Ws. Hence

dim(W14+Ws) =r+s+t = (r+s)+(r+t)—r = dim(Wi) +dim(Ws) —dim(W1NWs),
and we are done. O

Another way to form subspaces is to take linear combinations of some given vectors:

Proposition 7.8. Let vy, ...,v, be vectors in a vector space V. The set of all linear
combinations a1vy + agve + - - - + vy, of V1,..., Vv, forms a subspace of V.

The proof of this is completely routine and will be omitted. The subspace in this
proposition is known as the subspace spanned by vi,...,v,.

8 Linear transformations

When you study sets, the notion of function is extremely important. There is little
to say about a single isolated set, while functions allow you to link different sets.
Similarly, in Linear Algebra, a single isolated vector space is not the end of the story.
We want to connect different vector spaces by functions. Of course, we want to use
functions preserving the vector space operations.

8.1 Definition and examples

Often in mathematics, it is as important to study special classes of functions as it is
to study special classes of objects. Often these are functions which preserve certain
properties or structures. For example, continuous functions preserve which points are
close to which other points. In linear algebra, the functions which preserve the vector
space structure are called linear transformations.

Definition 8.1. Let U,V be two vector spaces over the same field K. A linear
transformation or linear map T from U to V is a function T: U — V such that

(i) T(ug +u2) = T(uy) + T'(ug) for all uj,uy € U;
(ii) T(au) = oT'(u) for all a € K and u € U.
Notice that the two conditions for linearity are equivalent to a single condition
T(au; + fug) = aT'(uy) + ST (ug) for all uy,us € U,a, 5 € K.
First let us state a couple of easy consequences of the definition:
Lemma 8.2. Let T: U — V be a linear map. Then
(i) T(0y) = Oy;

(ii) T(—u) = —=T(u) for allueU.
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Proof. For (i), the definition of linear map gives
T(0y) =T(0y +0y) =T(0y) + T(0v),

and therefore T'(0y) = Oy. For (ii), just put & = —1 in the definition of linear
map. ]

Example 8.3. 1. Let U = V = R?, and define a linear map 7: U — V by
T((a, B)) = (2a+ B,3a — B). Then for u = (o, 8) and v = (¢, f') we have

2(a+a) + (B+5),3(a+a’) = (B+ )
(2a + B,3a — B) + (2d/ + 3',3d" — )
= T(u)+T(v).

Tu+v) =

In addition T'(y(«, 8)) = (2ya + 76, 3y — vB) = ¥(2a + B,3a — B) = 7T (u).
Thus T is a linear transformation.

2. Let U = R", V = R™, and fix an m x n matrix A. Define T: U — V by
T(u) = Au. It is an important exercise in matrix/vector multiplication to check
that T is a linear transformation.

3. Let U = R?, V = R? and define T: U — V by T((a, 3,7)) = (a,3). Then
T is a linear map. This type of map is known as a projection, because of the
geometrical interpretation.

(Note: In future we shall just write T'(«, 3,7) instead of T'((«, 3,7)).)

4. Let U = V = R?. We interpret v in R? as a directed line vector from 0 to v
(see the examples in Section [5)), and let T'(v) be the vector obtained by rotating
v through an angle 6 anti-clockwise about the origin.

T(v)

It is easy to see geometrically that T'(u; + ug) = T'(u1) + T'(uz2) and T'(au) =
aT'(u) (because everything is simply rotated about the origin), and so 7" is a
linear map. By considering the unit vectors, we have T'(1,0) = (cos 6, sin #) and
7(0,1) = (—sinf, cos ), and hence

T(a,B) =aT(1,0) + T(0,1) = (arcos @ — Bsinf, asin @ + [ cosh).
(Ezercise: Show this directly.)

5. Let U = V = R? again. Now let T'(v) be the vector resulting from reflecting v
through a line through the origin that makes an angle /2 with the z-axis.
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T(v)

0/23"10

This is again a linear map. We find that 7'(1,0) = (cos#,sinf) and T(0,1) =
(sin@, — cos @), and so

T(a,p) =aT(1,0)+ 8T(0,1) = (acos + Bsinf, asinf — Fcosh).

6. Let U =V = R[z], the set of polynomials over R, and let T" be differentiation;
i.e. T(p(x)) = p/(z) for p € R[z]. This is easily seen to be a linear map.

7. Let U = K|[x], the set of polynomials over K. Every a € K gives rise to two
linear maps, shift S,: U — U, So(f(z)) = f(z — «) and evaluation E,: U —
K, Eo(f(z)) = f(a).

The next two examples seem dull but are important!

8. For any vector space V', we define the identity map Iyy: V — V by Iy(v) =v
for all v € V. This is a linear map.

9. For any vector spaces U, V over the field K, we define the zero map Oy : U — V
by Oy,v(u) = Oy for all u € U. This is also a linear map.

Warning! While we saw here that many familiar geometrical transformations, such
as projections, rotations, reflections and magnifications are linear maps, a nontrivial
translation is not a linear map, because it does not satisfy 7'(0y) = Oy

One of the most useful properties of linear maps is that, if we know how a linear
map U — V acts on a basis of U, then we know how it acts on the whole of U.

Proposition 8.4 (Linear maps are uniquely determined by their action on a basis).
Let U,V be vector spaces over K, let S be a basis of U and let f: S — V be any
function assigning to each vector in S an arbitrary element of V. Then there is a
unique linear map T: U — V such that for every s € S we have T'(s) = f(s).

Proof. Let u € U. Since S is a basis of U, by Proposition [6.11] there exist uniquely
determined «q,...,a, € K and s1,...,s, € S with u = ays81 + - - - + a,s,. Hence, if
T exists at all, then we must have

T(u) =T (181 + -+ apsp) = a1 f(s1) + -+ anf(sn),

and so T, if it exists, is uniquely determined.
On the other hand, it is routine to check that the map T': U — V defined by the
above equation is indeed a linear map, so T' does exist and is unique. ]

8.2 Operations on linear maps

We can define the operations of addition, scalar multiplication and composition on
linear maps.
Let T7: U — V and To: U — V be two linear maps, and let o € K be a scalar.

Definition 8.5 (Addition of linear maps). We define a map
Ti+T5:U =V
by the rule (77 + T5)(u) = T1(u) + Tz (u) for u € U.
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Definition 8.6 (Scalar multiplication of linear maps). We define a map
aly:U—V
by the rule (aT})(u) = oT7(u) for u € U.
Now let T1: U — V and Tb: V — W be two linear maps.

Definition 8.7 (Composition of linear maps). We define a map
T2T11 U—-Ww
by (T2T1)(u) = T5(T1(u)) for u e U.

In particular, we define 72 = T'T and T*! = T'T for i > 2.

It is routine to check that T} + T5, oT1 and 15T are themselves all linear maps
(and you should check it!).

Furthermore, for fixed vector spaces U and V over K, the operations of addition
and scalar multiplication on the set Homg (U, V') of all linear maps from U to V' makes
Hompg (U, V') into a vector space over K.

Given a vector space U over a field K, the vector space U* = Homg (U, K) plays
a special role. It is often called the dual space or the space of covectors of U. One can
think of coordinates as elements of U*. Indeed, suppose that U is finite-dimensional
and let e, ...,e, be a basis of U. Every x € U can be uniquely written as

X =q1e1 + -+ ane,, o; € K.

The scalars aq, ..., a, depend on x as well as on the choice of basis, so for each 7 one
can write the coordinate function

e U — K, e'(x)=a.

It is routine to check that each e’ is a linear map, and indeed the functions e!, ..., e"

form a basis of the dual space U*.

8.3 Linear transformations and matrices

We shall see in this section that, for fixed choice of bases, there is a very natural
one-one correspondence between linear maps and matrices, such that the operations
on matrices and linear maps defined in Chapters [2| and [8] also correspond to each
other. This is perhaps the most important idea in linear algebra, because
it enables us to deduce properties of matrices from those of linear maps,
and vice-versa. It also explains why we multiply matrices in the way we do.

Let T: U — V be a linear map, where dim(U) = n, dim(V') = m. Suppose that

we are given a basis e1,...,e, of U and a basis f;,...,f,, of V.
Now, for 1 < j < n, the vector T'(e;) lies in V/, so T'(e;) can be written uniquely
as a linear combination of fy,...,f,,. Let

T(e1) = anfi +anfo+ -+ amify
T(e2) = aiofi + agofo + -+ + apafin,

T(en) = a1pfi + aonfo + - + amnty,

where the coefficients a;; € K (for 1 <i <m, 1 < j < n) are uniquely determined.
Putting it more compactly, we define scalars a;; by

m
T(ej) = Z%’jfz‘ for 1 <j <n.
i=1
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The coefficients «;; form an m x n matrix

11 Q12 - Oip

Qg1 Q22 -+ Oop
A=

am1 Om2 - Qmp

over K. Then A is called the matrix of the linear map T with respect to the chosen
bases of U and V. In general, different choice of bases gives different matrices. We
shall address this issue later in the course, in Section

Notice the role of individual columns in A. The jth column of A consists of the
coordinates of T'(e;) with respect to the basis fi,...,f,, of V.

Theorem 8.8. Let U,V be vector spaces over K of dimensions n,m, respectively.
Then, for a given choice of bases of U and V', there is a one-one correspondence between
the set Homg (U, V') of linear maps U — V' and the set K™" of m x n matrices over
K.

Proof. As we saw above, any linear map T: U — V determines an m X n matrix A
over K.

Conversely, let A = (a;;) be an m x n matrix over K. Then, by Proposition
there is just one linear T': U — V with T'(e;) = > /" a;;f; for 1 < j < n, so we have
a one-one correspondence. O

Example 8.9. We consider again our examples from Example 8.3

1. T: R? - R?, T(a, B) = (2a+ B3,3a — ). Usually, we choose the standard bases
of K™ and K™, which in this case are e; = (1,0), e2 = (0,1), and f; = (1,0),
fo = (0,1). Then T'(e;) = 2f; + 3f, and T'(e3) = f; — f, and the matrix is

2 1
3 —-1)°
2. Let A be an m X n matrix. Define T': R™ — R™, by T'(u) = Au. The matrix of
T with respect to the standard bases of R™ and R™ is the matrix is A.

3. T:R3 = R2, T(a, B,7) = (o, B). We have T'(e1) = f1, T(e3) = fo, T(e3) = 0,

and the matrix is
100
010/

But suppose we choose different bases, say e; = (1,1,1), e = (0,1,1), e3 =
(1,0,1), and f; = (0,1), f5 = (1,0). Then we have T'(e;) = (1,1) = f; + 5,
T(e2) = (0,1) =f1, T'(e3) = (1,0) = f5, and the matrix is

110
101)°
4. T:R?> - R?, T is a rotation through # anti-clockwise about the origin. We saw

that T'(1,0) = (cosf,sin @) and T(0,1) = (—sin, cos §), so the matrix using the

standard bases is
cosf —sin6
sinf cosf )
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5. T: R? — R2, T is a reflection through the line through the origin making an
angle 0/2 with the x-axis. We saw that 7'(1,0) = (cos#,sin6) and 7°(0,1) =
(sin®, — cos ), so the matrix using the standard bases is

cos@ sind
sinf —cosf) "

6. This time we take the differentiation map 7' from R[z]<, to R[z|<,—1. Then,

with respect to the bases 1,z,2z2,...,2" and 1,z,2%,...,2" ! of R[z]<p and
R[x]<p—1, respectively, the matrix of T is

0100-- 0 O

0020 - 0 O

0003 - 0 O

0000 :--n—-10

0000 -+ 0 n

7. Let So: K[z]<n — K|x]<p be the shift. With respect to the basis 1,x, 2%, ... 2"
of K[z|<p, we calculate S,(z") = (z — «)™. The binomial formula gives the
matrix of S,

1 —a ao® - (=1)™a™

0 1 —2a --- (=1)"lpan!

0 0 1 . (_1)n72 n(n2—1) anf2

o0 0 - —no

0 0 0o --- 1
In the same basis of K[z]<, and the basis 1 of K, E,(z") = a". The matrix of
E, is

(1 « a? ... ! o).

8. T:V — V is the identity map. Notice that U = V in this example. Provided
that we choose the same basis for U and V, then the matrix of T"is the n x n
identity matrix I,,. We shall be considering the situation where we use different
bases for the domain and range of the identity map in Section

9. T: U — V is the zero map. The matrix of T' is the m X n zero matrix 0,
regardless of what bases we choose. (The coordinates of the zero vector are all
zero in any basis.)

We now connect how a linear transformation acts on elements of a vector space to
how its matrix acts on their coordinates.
For the given basis eq,...,e, of U and a vector u = Aje; +---+ \p,e, € U, let u

denote the column vector
A

A2
1
c K™,

[=
Il

An
whose entries are the coordinates of u with respect to that basis. Similarly, for the
given basis fi,...,f, of V and a vector v = p1f; + - + pmfn € V, let v denote the
column vector
2
P2 e g

<
I

[im
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whose entries are the coordinates of v with respect to that basis.

Proposition 8.10. Let T': U — V be a linear map. Let the matriz A = (a;;) represent
T with respect to chosen bases of U and V', and let u and v be the column vectors of
coordinates of two vectors u € U and v € V, again with respect to the same bases.
Then T'(u) = v if and only if Au=v.

Proof. We have

T(w) =T Nej) =Y NT(e) = > N ayf) =Y O ayi)fi =) wfi,
i=1 =1 =1 =1 im1 j=1 i=1

where p; = Z?:l a;j\j is the entry in the ith row of the column vector Au. This
proves the result. O

What is this proposition really telling us? One way of looking at it is this. Choosing
a basis for U gives every vector in U a unique set of coordinates. Choosing a basis
for V gives every vector in V a unique set of coordinates. Now applying the linear
transformation T o u € U is “the same” as multiplying its column vector of coordinates
by the matrix representing T, as long as we interpret the resulting column vector as
coordinates in V' with respect to our chosen basis.

Of course, choosing different bases will change the matrix A representing 7', and
will change the coordinates of both u and v. But it will change all of these quantities
in exactly the right way that the theorem still holds.

8.4 The correspondence between operations on linear maps and ma-
trices

Let U, V and W be vector spaces over the same field K, let dim(U) = n, dim(V') = m,
dim(W) = [, and choose fixed bases ey, ...,e, of U and fi,...,f, of V,and g1,...,g
of W. All matrices of linear maps between these spaces will be written with respect
to these bases.

We have defined addition and scalar multiplication of linear maps, and we have
defined addition and scalar multiplication of matrices. We have also defined a way
to associate a matrix to a linear map. It turns out that all these operations behave
together in the way we might hope.

Proposition 8.11. 1. LetTy,Ty: U — V be linear maps with m xn matrices A, B
respectively. Then the matriz of Ty + T is A+ B.

2. LetT: U — V be a linear map with m x n matrices A and let A € K be a scalar.
Then the matrixz of XT is AA.

Proof. These are both straightforward to check, using the definitions, as long as you
keep your wits about you. Checking them is a useful exercise, and you should do
it. O

Note that the above two properties imply that the natural correspondence between
linear maps and matrices is actually itself a linear map from Homg (U, V) to K™™.

Composition of linear maps corresponds to matrix multiplication. This time the
correspondence is less obvious, and we state it as a theorem.

Theorem 8.12. Let T1: V — W be a linear map with | x m matriz A = (a;;) and
let To: U =V be a linear map with m x n matriz B = (b;;). Then the matriz of the
composite map T1Ty: U — W is AB.
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Proof. Let AB be the [ xn matrix (¢;;). Then by the definition of matrix multiplication,
we have ¢;, = Z;"Zl aijjbji for 1 <i <1,1 <k <n.
Let us calculate the matrix of T775. We have

TTs(er) =T1 Z birnf;) Z birT1(f; Z bjk Z a;ijgi
m
= Z Zaz] ]k: g = Zczkgu

=1

so the matrix of 7175 is (¢;;) = AB as claimed. O]

Examples. Let us look at some examples of matrices corresponding to the composi-
tion of two linear maps.

1. Let Rp: R? — R? be a rotation through an angle 6 anti-clockwise about the
origin. We have seen that the matrix of Ry (using the standard basis) is
<c059 —sinf

sinf cosf
the corresponding result for matrices:

cos¢p —sing) [(cosf —sinf

sing cos¢ sinf cosf
_ [cospcosf —singsinf —cospsinf — sin¢pcosd
~ \singcosf + cos psinf — sin ¢ sin @ + cos ¢ cos §

_ <cos(<;5 +0) —sin(¢ + 0)>
sin(p+6) cos(p+0) )°

> . Now clearly Ry followed by Ry is equal to Rpyg. We can check

Note that in this case T1T5 = T>T;. This actually gives an alternative way of
deriving the addition formulae for sin and cos.

2. Let Ry be as in Example 1, and let My: R? — R? be a reflection through a line
through the origin at an angle 6/2 to the z-axis. We have seen that the matrix
cosf sinf

f My i .

or Mo s <s1n9 —cos?
this case, it might be easier (for some people) to work it out using the matrix
multiplication! We have

cos¢ sing cosf —sinf
sin¢g —cos¢) \sinf cos6

_ <cos¢cos€+sin¢sin9 —cos¢sin9+sin¢cos€)

> . What is the effect of doing first Ry and then My? In

sin ¢ cosf — cospsinf —sin ¢psinf — cos ¢ cos 0

~ (s Sl ).

which is the matrix of My_g.
We get a different result if we do first My and then Ry. What do we get then?

9 Kernels and Images

9.1 Kernels and images

To any linear map U — V, we can associate a subspace of U and a subspace of V.
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Definition 9.1. Let T: U — V be a linear map. The image of T, written as im(7T),
is the set of vectors v € V such that v = T'(u) for some u € U.

Definition 9.2. The kernel of T, written as ker(7'), is the set of vectors u € U such
that T'(u) = Oy.

If you prefer:
im(7T) ={T(u) |lueU}; ker(T) ={ue U | T(u) =0y}.
Example 9.3. We return to the examples of Example and Example
e In Example[1] ker(T) = 0 and im(7) = R2.
e In Example 3| ker(T") = {(0,0,7) | v € R}, and im(T") = R?.
e In Examples 4] and |5 ker(7") = {0} and im(7T) = R2.

e In Example @ ker(T') is the set of all constant polynomials (i.e. those of degree
0), and im(7") = R[z].

e In Example [7] ker(S,) = {0}, and im(S,) = K[z], while ker(E,) is the set of
all polynomials d1v151ble by x — a, and im(E,) = K.

e In Example [§] ker(Iy) = {0} and im(T) = V.

In Example @ ker(Oyy) = U and im(0y,y ) = {0}.

We have just proved that Example [2| is actually the general example of a linear
map from K™ to K. We will consider this over the next few sections.

Proposition 9.4. Let T: U — V be a linear map. Then
(i) im(T) is a subspace of V;
(ii) ker(T) is a subspace of U.

Proof. For , we must show that im(7") is closed under addition and scalar multi-
plication. Let vi,vy € im(T"). Then vi = T'(u1), vo = T(uz) for some uj,uz € U.
Then

vi+ vy =T(u1) +T(u2) = T(ug + ug) € im(T)

and
avy = aT(uy) = T(auy) € im(T),

so im(7') is a subspace of V.
Let us now prove . Similarly, we must show that ker(7") is closed under addition
and scalar multiplication. Let uj, us € ker(T"). Then

T(u; +ug) = T(0y) + T(0y) = Oy + Oy = Oy

and
T(au;) = a7 (u1) = a0y = Oy,

so uj + ug, au; € ker(7T') and ker(7T') is a subspace of U. O
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9.2 Rank and nullity

The dimensions of the kernel and image of a linear map contain important information
about it, and are related to each other.

Definition 9.5. let T: U — V be a linear map.
(i) dim(im(7)) is called the rank of T’
(i1) dim(ker(T)) is called the nullity of T

Theorem 9.6 (The rank-nullity theorem). Let U,V be vector spaces over K with U
finite-dimensional, and let T: U — V be a linear map. Then

rank(7") + nullity(7") = dim(U).

Proof. Since U is finite-dimensional and ker(T") is a subspace of U, ker(T) is finite-

dimensional. Let nullity(7T') = s and let eg,...,es be a basis of ker(7"). By The-

orem [6.20] we can extend ep,...,e; to a basis ey,..., e, f1,...,f. of U. Then

dim(U) = s + r, so to prove the theorem we have to prove that dim(im(7")) = r.
Clearly T'(e1),...,T(es), T(f1),...,T(f.) span im(7T'), and since

T(el) == T(es) = OV

this implies that T'(f;),...,T(f;) span im(7"). We shall show that T'(f;),...,T(f,) are
linearly independent.
Suppose that, for some scalars a;, we have

OélT(fl) S I OLTT(fT) = Oy.

Then T(aif; + -+ + apf,) = Oy, so axfy + -+ - + o, f,. € ker(T'). But e1,...,e5 is a
basis of ker(7T'), so there exist scalars (; with

arfy +- -+ oty = per +- + fses = arfi + - + by — Breg — - — Bses = 0y

But we know that eq,...,es fi,..., f. form a basis of U, so they are linearly indepen-
dent, and hence

alz".:aT:/Blz.”:BS:O7

and we have proved that T'(f;), ..., T(f,) are linearly independent.
Since T'(f1),...,T(f;) both span im(7") and are linearly independent, they form a
basis of im(7"), and hence dim(im(7")) = r, which completes the proof. O

Examples. Once again, we consider Examples [BHI| of Example [8:3] Since we only
want to deal with finite-dimensional spaces, we restrict to an (n+ 1)-dimensional space
K[]<p in examples[6]and [7] that is, we consider T: R[z]<p, — R[2]<n, Sa: K[z]<p —
K[z]<p, and E,: K[z|<, — K correspondingly. Let n = dim(U) = dim(V) in
and [8

rank(7") nullity(7) dim(U)

2 1 3
2 0 2
2 0 2
n 1 n+1
n+1 0 n+1
1 n n+1
n 0 n
0 n n
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Corollary 9.7. Let T: U — V be a linear map, and suppose that dim(U) = dim (V') =
n. Then the following properties of T are equivalent:

(i) T is surjective;
(ii) rank(T) = n;
(#3) nullity(T") = 0;
(iv) T is injective;
(v) T is bijective;

Proof. The surjectivity of T' means precisely that im(7") =V, so ({i) = . Conversely,
if rank(7T") = n, then dim(im(7")) = dim(V') so (by Corollary a basis of im(T") is
a basis of V, and hence im(7") = V. Thus < ().

The equivalence & follows directly from Theorem

Now nullity(7') = 0 means that ker(T") = {0} so clearly = (iil). On the
other hand, if ker(7') = {0} and T'(u;) = T'(u2) then T'(u; —u2) =0, s0 u; —ug €
ker(T') = {0}, which implies u; = ug and T is injective. Thus & (iv). (In fact,
this argument shows that < [iv| is true for any linear map T'.)

Finally, is equivalent to ({i) and , which we have shown are equivalent to
each other. O

9.3 The rank of a matrix

Let T: U — V be a linear map, where dim(U) = n, dim(V) = m. Let e;,...,e, be a
basis of U and let fy, ..., f,, be a basis of V.

Recall from Section |9.2] that rank(7) = dim(im(7")).

Now im(7’) is spanned by the vectors T'(e;), ..., T(e,), and by Theorem some
subset of these vectors forms a basis of im(7"). By definition of basis, this subset has
size dim(im(7)) = rank(T'), and by Corollary [6.24] no larger subset of T'(e1),...,T(e,)
can be linearly independent. We have therefore proved:

Lemma 9.8. Let T: U — V be a linear transformation, and let ey, ..., e, be a basis
of U. Then the rank of T is equal to the size of the largest linearly independent subset
of T(er),..., T(en).

Now let A be an m x n matrix over K. We shall denote the m rows of A, which
are row vectors in K" by ry,ra,...,r,,, and similarly, we denote the n columns of A,
which are column vectors in K™! by cq,ca,...,cy.

Definition 9.9. 1. The row space of A is the subspace of K™ spanned by the rows
ri,...,ry, of A. The row rank of A is equal to the dimension of the row space
of A. Equivalently, by the argument above, the row rank of A is equal to the
size of the largest linearly independent subset of ry,...,rpy,.

2. The column space of A is the subspace of K™ spanned by the columns cy, ..., c,
of A. The column rank of A is equal to the dimension of the column space of A.
Equivalently, by the argument above, the column rank of A is equal to the size
of the largest linearly independent subset of cq, ..., c,.

There is no obvious reason why there should be any particular relationship between
the row and column ranks, but in fact it will turn out that they are always equal.
First we show that the column rank is the same as the rank of the associated linear
map.

Theorem 9.10. Suppose that the linear map T has matriz A. Then rank(T) is equal
to the column rank of A.
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Proof. As we saw in Section the columns cy, ..., c, of A are precisely the column
vectors of coordinates of the vectors T'(e1),..., T'(e,), with respect to our chosen
basis of V. The result now follows directly from Lemma O

1 2 0 1 1\nr

A=12 4 1 3 0 |ro

4 8 0 4 4 )1y

C1 C9 C3 Cq Cy

We can calculate the row and column ranks by applying the sifting process
(described in Section @ to the row and column vectors, respectively.

Doing rows first, r; and ro are linearly independent, but r3 = 4ry, so the row rank
is 2.

Now doing columns, co = 2¢1, ¢4 = ¢1 + ¢3 and ¢5 = ¢; — 2c3, so the column rank
is also 2.

Theorem 9.11. Applying elementary row operations (R1), (R2) or (R3) to a matrix
does not change the row or column rank. The same is true for elementary column
operations (C1), (C2) and (C3).

Proof. We will prove first that the elementary row operations do not change either
the row rank or column rank.

The row rank of a matrix A is the dimension of the row space of A, which is the
space of linear combinations Airy + - - - 4+ A,y of the rows of A.

We just need to check this for each of the three row operations. In each case, let
r,...,r,, be the rows of the matrix B obtained by doing the row operation.

R1 If B is the result of adding p times row ¢ to row j, then the rows of B satisfy
r, =1 if k # j, and r;- =1, + pr;. Then if v =" A\pr} is in the row space of

B, we have
vV = Z)\krk + ()\Z + u)\j)ri,
ki
so v is in the row space of A. Conversely, if v =Y \xry is in the row space of
A, we have

VvV = Z)\krﬁc + ()\z — u)\j)ri,
k#i

so v is in the row space of B.

R2 If B is the result of switching rows ¢ and j, then r; = r;, and v/, = r;. If
v = -, AT is in the row space of A, then v = Zk#J AL + /\ir; + A} is
in the row space of B, and vice-versa.

R3 If B is the result of multiplying row ¢ by a nonzero scalar p, then rj = ry, for
k #4, and v} = pr;. If v.=>"]" | A\gry is in the row space of A, then

vV = Z)\krk + )\i/ur;
ki

is in the row space of B. Conversely, if v =) ;" A\yr} is in the row space of B,
then
v = Z AkT + [T
ki

is in the row space of A.
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The column rank of A = (a;;) is the size of the largest linearly independent subset
of c1,...,¢p. Let {c1,...,cs} be some subset of the set {c1,...,c,} of columns of A.
(We have written this as though the subset consisted of the first s columns, but this is
just to keep the notation simple; it could be any subset of the columns.)

Then cq,...,cs are linearly dependent if and only if there exist scalars x1,...,xs €
K, not all zero, such that z1c1+x2co+- - -+x5¢s = 0. If we write out the m components
of this vector equation, we get a system of m simultaneous linear equations in the
scalars x; (which is why we have suddenly decided to call the scalars z; rather than
Ai).

o171 + apexy + -+ apss =0

Q211 + QX2 + - + agss =0

Um1T1 + Qoo + - -+ apsTs = 0

Now if we perform (R1), (R2) or (R3) on A, then we perform the corresponding
operation on this system of equations. That is, we add a multiple of one equation to
another, we interchange two equations, or we multiply one equation by a non-zero
scalar. None of these operations change the set of solutions of the equations. Hence
if they have some solution with the x; not all zero before the operation, then they
have the same solution after the operation. In other words, the elementary row
operations do not change the linear dependence or independence of the set of columns
{c1,...,¢s}. Thus they do not change the size of the largest linearly independent

subset of ¢y, ..., ¢y, so they do not change the column rank of A.
The proof for the column operations (C1), (C2) and (C3) is the same with rows
and columns interchanged. O

Corollary 9.12. Let s be the number of non-zero rows in the row and column reduced
form of a matriz A (see Theorem . Then both row rank of A and column rank of
A are equal to s.

Proof. Since elementary operations preserve ranks, it suffices to find both ranks of a
matrix in row and column reduced form. But it is easy to see that the row space is
precisely the space spanned by the first s standard vectors and hence has dimension s.
Similarly the column space has dimension s. O

In particular, Corollary establishes that the row rank is always equal to the
column rank. This allows us to forget this distinction. From now we shall just talk
about the rank of a matriz.

Corollary 9.13. The rank of a matriz A is equal to the number of non-zero rows
after reducing A to upper echelon form.

Proof. The corollary follows from the fact that non-zero rows of a matrix in upper
echelon form are linearly independent.

To see this, let rq, ..., rs be the non-zero rows, and suppose that Ajri+-- -+ Asrg =
0. Now r; is the only row with a non-zero entry in column ¢(1), so the entry in column
c(1) of the vector A\iry + --- + A\srg is A1, and hence A\; = 0.

But then rg is the only row ry with & > 2 with a non-zero entry in column ¢(2)
and so the entry in column ¢(2) of the vector Aorg + - - -+ Agrg is Ao, and hence Ao = 0.
Continuing in this way (by induction), we find that Ay = Ao = --- = A, = 0, and so
ri,...,rg are linearly independent, as claimed. O

Corollary gives an efficient f computing the rank of a matrix. For

)

w
1201
instance, let us look at A=12 4 1 3
4815
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Matrix Operation
12011 oo
24130 27T
48152 S
1201 1
0011 -2 rs — I3 —1I2
0011 =2
1201 1
011 -2
0000 O

Since the resulting matrix in upper echelon form has 2 nonzero rows, rank(A) = 2.

10 The inverse of a linear transformation and of a matrix

10.1 Definitions

As usual, let T: U — V be a linear map with corresponding m x n matrix A. If there
isamap T7!: V — U with TT~! = Iy and T7'T = Iy then T is said to be invertible,
and T~ is called the inverse of T.

If this is the case, and A~! is the (n x m) matrix of T7~!, then we have AA~! = I,
and A~'A = I,,. We call A~ the inverse of the matrix A, and say that A is invertible.
Matrices that are not invertible are also called singular. Conversely, if A~1 is an n x m
matrix satisfying AA~! = I,,, and A='A = I,,, then the corresponding linear map 7!
satisfies TT ! = Iy and T—'T = Iy, so it is the inverse of T

Lemma 10.1. Let A be a matriz of a linear map T. A linear map T is invertible if
and only if its matriz A is invertible. The inverses T~ and A" are unique.

Proof. Recall that, under the bijection between matrices and linear maps, multiplica-
tion of matrices corresponds to composition of linear maps. It now follows immediately
from the definitions above that invertible matrices correspond to invertible linear
maps. This establishes the first statement.

Since the inverse map of a bijection is unique, 7! is unique. Under the bijection
between matrices and linear maps, A~' must be the matrix of 7= Thus, A~! is
unique as well. O

Theorem 10.2. A linear map T: U — V is invertible if and only if T satisfies
the equivalent conditions of Corollary [9.7. In particular, if T is invertible, then
dim(U) = dim(V'), so only square matrices can be invertible.

Proof. If any function 7T has a left and right inverse, then it must be a bijection.
Hence ker(T') = {0} and im(7) =V, so nullity(7T") = 0 and rank(7") = dim(V') = m.
But by Theorem we have

n = dim(U) = rank(T") 4+ nullity(T) =m +0=m

and we see from the definition that 7' is non-singular.

Conversely, if n = m and T is non-singular, then by Corollary T is a bijection,
and so it has an inverse 77 ': V — U as a function. However, we still have to
show that T~ is a linear map. Let vi,vo € V. Then there exist u;,uy € U with
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T(uy) = vy, T(uz) = va. So T(u; +uz) = vi + vy and hence T~ (vy +v2) = u; + us.
If « € K, then
T Yavy) =T YT (ow)) = au; = aT " (vy),

so T~ is linear, which completes the proof. ]
120 L2

Example 10.3. Let A = <2 0 1) and B= | 0 1 |. Then AB = I, but
-2 5

BA # I3, so a non-square matrix can have a right inverse which is not a left inverse.
However, it can be deduced from Corollary that if A is a square n X n matrix and
AB = I, then A is non-singular, and then by multiplying AB = I,, on the left by
A~! we see that B = A~! and so BA = I,,.

This technique of multiplying on the left or right by A~! is often used for trans-
forming matrix equations. If A is invertible, then AX = B <= X = A~'B and
XA=B<+= X=BAL

Lemma 10.4. If A and B are invertible n x n matrices, then AB is invertible, and
(AB)"! =B~ tA-1,

Proof. Direct calculation shows that ABB~ 1A~ = B~1A-1AB = I,. O

10.2 Matrix inversion by row reduction

Two methods for finding the inverse of a matrix will be studied in this course. The
first, using row reduction, which we shall look at now, is an efficient practical method
similar to that used by computer packages. The second, using determinants, is of
more theoretical interest, and will be done later in Section

First note that if an n x n matrix A is invertible, then it has rank n. Consider
the row reduced form B = (b;;) of A. As we saw in Section we have b;.; = 1 for
1 <i < n (since rank(A) = rank(B) = n), where ¢(1) < ¢(2) < --+ < ¢(n), and this is
only possible without any zero columns if ¢(i) =i for 1 <1 < n. Then, since all other
entries in column ¢(¢) are zero, we have B = I,,. We have therefore proved:

Proposition 10.5. The row reduced form of an invertible n x n matriz A is I,.

To compute A™!, we reduce A to its row reduced form I,,, using elementary row
operations, while simultaneously applying the same row operations, but starting with
the identity matrix I,,. It turns out that these operations transform I,, to A=,

In practice, we might not know whether or not A is invertible before we start, but
we will find out while carrying out this procedure because, if A is not invertible, then
its rank will be less than n, and it will not row reduce to I,,.

First we will do an example to demonstrate the method, and then we will explain
why it works. In the table below, the row operations applied are given in the middle
column. The results of applying them to the matrix

A=

N = W

21
13
16

are given in the left column, and the results of applying them to I3 in the right column.
So A~! should be the final matrix in the right column.
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Matrix 1 Operation(s)
321
413
216
4 r; — %rl
123 1/3
4 1 3
2 1 6
ro — ro — 4ry
4 rs — rg — 2r;
1 23 13
0 —5/3 53
0 —1/3 16/3
J, ro — —%I'Q
2/3 1/3
0o 1 -1
0 —1/3 16/3
rA —-riy — %I’Q
4 rs — rs+ %rg
10 1
01 -1
00 5
4 rs — %1‘3
10 1
01 -1
00 1
: ry —ry;—rs
1 ro — ro+r3
100
010
001
So
—3/p5 11/35
A7l = | 1825 1625
—2/25 —1/25

Matrix 2

S O =

— O = O
_ o O

1300
0 10
0 01

1
/3 00
—4/3 10
-2/30 1

1
30 0

s —=3/5 0
—2/3 0

9
it

—1/5 25
Afs =3[5O
—2/5 —1/5 1
1
—1f5 25 0

4/ =35 0
—2/25 —1j25 1/5

|
—3f25 115 —1/5
18/a5 —16/25 1/5
—2/25 —lps5 1/5

—1/s

1/5
1/5

It is always a good idea to check the result afterwards. This is easier if we remove the
common denominator 25, and we can then easily check that

321 -3 11 =5 -3 11
413 18 =16 5 | =118 =16 5
216 -2 -1 5 -2 -1

which confirms the result!

10.3 Elementary matrices

321 25 0 0
413]=10250
216 0 0 25

We shall now explain why the above method of calculating the inverse of a matrix
works. Each elementary row operation on a matrix can be achieved by multiplying the
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matrix on the left by a corresponding matrix known as an elementary matriz. There
are three types of these, all being slightly different from the identity matrix.

1. E(n)}, ; (where i # j) is the an n X n matrix equal to the identity, but with an
additional non-zero entry A in the (7, j) position.

2. E(n)z2 ; is the n x n identity matrix with its ith and jth rows interchanged.
3. E(n)il (where A # 0) is the n x n identity matrix with its (7,4) entry replaced
by A.

Example 10.6. Some 3 x 3 elementary matrices:

Let A be any m X n matrix. Then E(m)§7i7jA is the result we get by adding A
times the jth row of A to the ith row of A. Similarly E(m)?yjA is equal to A with its
1th and jth rows interchanged, and E (m)iZ is equal to A with its ith row multiplied
by A. You need to work out a few examples to convince yourself that this is true. For
example

1111 1 0 00 1111 1111
E(4)12422222:0100 2222:2222
13333 0 0160 3333 3333
4444 0 -201 4444 0000

So, in the matrix inversion procedure, the effect of applying elementary row
operations to reduce A to the identity matrix I,, is equivalent to multiplying A on the
left by a sequence of elementary matrices. In other words, we have E,.E,._1--- F1A =
I,,, for certain elementary n x n matrices Ey,...,E,. Hence E,E,_;---FE; = A™'.
But when we apply the same elementary row operations to I, then we end up with
E,E._i---EI, = A~'. This explains why the method works.

Notice also that the inverse of an elementary row matrix is another one of the same
type. In fact it is easily checked that the inverses of E(n)%\”, E(n)f] and E(n)‘iz are
respectively E(n)l_)\w-, E(n)?] and E(n)i_ll Hence, if E, E,_1---E1A =1, as in
the preceding paragraph, then by using Lemma we find that

A= (E.Ery...E) ' =E'E;Y . ETY
which is itself a product of elementary matrices. We have proved:

Theorem 10.7. An invertible matriz is a product of elementary matrices.

10.4 Solving systems of linear equations revisited

Recall from Section that solving a system of m linear equations in n variables is
equivalent to finding a vector x € R™ (or more generally in K", if the coefficients of
the equations are in a field K') that satisfies the equation

Ax = b,

where A is an m x n matrix, and b is a vector of length m (or equivalently, a m x 1
matrix).
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When n = m, so A is a square matrix, and A is invertible, multiplying both sides
of this equation on the left by A~! we get

x=A1Ax = A b.

In general, it is more efficient to solve the equations Ax = b by Gaussian elimination
rather than by first computing A~! and then A~'b. However, if A7! is already known
for some reason, then this is a useful method.

Example 10.8. Consider the system of linear equations

3r+2y+2=0 (1)
dr +y + 3z =2 (2)
20 +y+ 62 =6. (3)

321 =325 1ljas —1/5
Here A = |4 1 3|, and we computed A=* = | 18/25 —16/25 1/5 | in Sec-
216 _2/25 _1/25 1/5

0
tion [10.2l Computing A~'b with b = | 2 | yields the solution z = —28—5, y = —%,
6

z= 2—?. If we had not already known A~!, then it would have been quicker to solve
the linear equations directly rather than computing A~! first.

In the case that n = m and A is invertible we note that x is determined, so the
system of equations has a unique solution. In general, though, there is no guarantee
that there is a unique solution; there can be zero, one or many solutions. The case of
a unique solution occurs exactly when the matrix A is non-singular (invertible).

Theorem 10.9. Let A be an n X n matriz. Then

(i) the homogeneous system of equations Ax = 0 has a non-zero solution if and only
if A is singular;

(ii) the equation system Ax = b has a unique solution if and only if A is non-singular.

When A is an m X n matriz, the system Ax = b has solutions if and only if b lies in
the column space of A. If so, if x is one solution to the system, then the complete set
of solutions equals

x + nullspace(A) = {x +y | y € nullspace(A4)}.

If the field K s infinite and there are solutions but ker(T) # {0}, then there are
infinitely many solutions.

Proof. We first prove ([i). The solution set of the equations is exactly nullspace(A). If
T is the linear map corresponding to A then, by Corollary

nullspace(T") = ker(T") = {0} <= nullity(T') = 0 <= T is non-singular,

and so there are non-zero solutions if and only if 7" and hence A is singular.

Now . If A is singular then its nullity is greater than 0 and so its nullspace is
not equal to {0}, and contains more than one vector. Either there are no solutions, or
the solution set is x + nullspace(A) for some specific solution x, in which case there is
more than one solution. Hence there cannot be a unique solution when A is singular.

Conversely, if A is non-singular, then it is invertible by Theorem [10.2] and one
solution is x = A~ !b. Since the complete solution set is then x + nullspace(A), and
nullspace(A) = {0} in this case, the solution is unique.
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When A is an m x n matrix, if Ax = b, then z1a; + --- + z,a, = b, where a;
is the ith column of A. This shows that a solution x to Ax = b is equivalent to a
linear combination of the columns of A equalling b, which is the definition of b being
in the column space of A. If x and z are two solutions to the system of equations
then A(z —x) = Az — Ax =b — b =0, so z — x lies in the nullspace of A, and thus
z € x + nullspace(A). This shows that all solutions are of this form. Conversely, if
y lies in the nullspace of A, then A(x +y) = Ax+ Ay=b+0=Db,sox+yisa
solution to the equations. ]

11 The determinant of a matrix

11.1 Definition of the determinant

Let A be an n X n matrix over the field K. The determinant of A, which is written
as det(A) or sometimes as |A[, is a certain scalar that is defined from A in a rather
complicated way. The definition for n = 2 might already be familiar to you.

a b
A= (c d> det(A) = ad — be.

Where does this formula come from, and why is it useful?

The geometrical motivation for the determinant is that it represents area or volume.
For n = 2, when K = R, consider the position vectors of two points (x1,y1), (z2,y2) in
the plane. Then, in the diagram below, the area of the parallelogram OABC enclosed
by these two vectors is

T1792 s1n(92 — 01) = T1T2(Sln 92 COS 91 — Sin 91 COS 02) = T1Y2 — T2Y1 = ! 2
Y1 Y2
C
B = (22,92
T2
T1
02 A= (x1,91)
01
@]

Similarly, when n = 3 the volume of the parallelepiped enclosed by the three position
vectors in space is equal to (plus or minus) the determinant of the 3 x 3 matrix defined
by the coordinates of the three points.

Now we turn to the general definition for n x n matrices. Suppose that we take
the product of n entries from the matrix, where we take exactly one entry from each
row and one from each column. Such a product is called an elementary product. There
are n! such products altogether (we shall see why shortly) and the determinant is the
sum of n! terms, each of which is plus or minus one of these elementary products. We
say that it is a sum of n! signed elementary products. You should check that this holds
when n = 2.

Before we can be more precise about this, and determine which signs we choose for
which elementary products, we need to make a short digression to study permutations
of finite sets. A permutation of a set, which we shall take here to be the set X,, =
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{1,2,3,...,n}, is simply a bijection from X, to itself. The set of all such permutations
of X, is called the symmetric group S,. There are n! permutations altogether, so
|Sp| = nl.

(A group is a set of objects, any two of which can be multiplied or composed
together, and such that there is an identity element, and all elements have inverses.
Other examples of groups that we have met in this course are the n x n invertible
matrices over K, for any fixed n, and any field K. The study of groups, which is
known as Group Theory, is an important branch of mathematics, but it is not the
main topic of this course!)

Now an elementary product contains one entry from each row of A, so let the
entry in the product from the ith row be a;4(;), where ¢ is some as-yet unknown
function from X, to X,,. Since the product also contains exactly one entry from each
column, each integer j € X,, must occur exactly once as ¢(i). But this is just saying
that ¢: X,, — X, is a bijection; that is ¢ € S,,. Conversely, any ¢ € S,, defines an
elementary product in this way.

So an elementary product has the general form ayg(1)a24(2) - - - Gng(n) for some
¢ € Sy, and there are n! elementary products altogether. We want to define

det(A) = > +a141)26(2) - - - Ang(n);
PESy

but we still have to decide which of the elementary products has a plus sign and which
has a minus sign. In fact this depends on the sign of the permutation ¢, which we
must now define.

A transposition is a permutation of X, that interchanges two numbers i and j in
X,, and leaves all other numbers fixed. It is written as (4, j). There is a theorem, which
is quite easy, but we will not prove it here because it is a theorem in Group Theory,
that says that every permutation can be written as a composition of transpositions.
For example, if n = 5, then the permutation ¢ defined by

P(1) =4, ¢(2) =5, ¢(3) =3, ¢(4) =2, ¢(5) =1

is equal to the composition (1,4) o (2,4) o (2,5). (Remember that permutations are
functions X,, — X,,, so this means first apply the function (2,5) (which interchanges
2 and 5) then apply (2,4) and finally apply (1,4).)

Definition 11.1. Now a permutation ¢ is said to be even, and to have sign +1, if ¢
is a composition of an even number of transpositions, and ¢ is said to be odd, and to
have sign —1, if ¢ is a composition of an odd number of transpositions.

For example, the permutation ¢ defined on X, above is a composition of 3
transpositions, so ¢ is odd and sign(¢) = —1. The identity permutation, which leaves
all points fixed, is even (because it is a composition of 0 transpositions).

Now at last we can give the general definition of the determinant.

Definition 11.2. The determinant of a n x n matrix A = (a;;) is the scalar quantity

det(A) = Z sign(¢)a1¢(1)a2¢(2) oo Opg(n)-
PESR

(Note: You might be worrying about whether the same permutation could be
both even and odd. Well, there is a moderately difficult theorem in Group Theory,
which we shall not prove here, that says that this cannot happen; in other words, the
concepts of even and odd permutation are well-defined.)
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11.2 The effect of matrix operations on the determinant

Theorem 11.3. Elementary row operations affect the determinant of a matrix as
follows.

(i) det(L,) = 1.

(ii) Let B result from A by applying (R2) (interchanging two rows). Then det(B) =
—det(A).

(iii) If A has two equal rows then det(A) = 0.

(iv) Let B result from A by applying (R1) (adding a multiple of one row to another).
Then det(B) = det(A).

(v) Let B result from A by applying (R3) (multiplying a row by a scalar \). Then
det(B) = Adet(A).

Proof. (i) If A = I,, then a;; = 0 when i # j. So the only non-zero elementary
product in the sum occurs when ¢ is the identity permutation. Hence det(A) =
ailasy . ..any = 1.

(ii) To keep the notation simple, we shall suppose that we interchange the first two
rows, but the same argument works for interchanging any pair of rows. Then if
B = (b;j), we have b1; = agj and by; = ay; for all j. Hence

PESn

— Z Sign(@)a14(2)@2¢(1)@34(3) - - - Ing(n)-
PESn

For ¢ € Sy, let h = ¢ o (1,2), so ¢(1) = ¢(2) and ¢(2) = (1), and sign(¢)) =
—sign(¢). Now, as ¢ runs through all permutations in S,,, so does ¢ (but in a
different order), so summing over all ¢ € S,, is the same as summing over all
1 € 5,. Hence

det(B) = Z — sign(w)aw(l)aw(g) e an¢(n)
PESR

= Z — Sign(w)a1¢(1)a2¢(2) e am/,(n) = — det(A)
YESn

(iii) Again to keep notation simple, assume that the equal rows are the first two.
Using the same notation as in , namely ¢ = ¢ o (1,2), the two elementary
products:

A1yp(1)023(2) - - - Opp(n) AN A16(1)A26(2) - - - Ang(n)

are equal. This is because a1y = agy(1) (first two rows equal) and agy(1) = ag¢(2)
(because ¢(2) = 1(1)); hence ayy(1) = aggp(2)- Similarly agy2) = a14(1) and the
two products differ by interchanging their first two terms. But sign(y) =
— sign(¢) so the two corrresponding signed products cancel each other out. Thus
each signed product in det(A) cancels with another and the sum is zero.
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(iv) Again, to simplify notation, suppose that we replace the second row ro by ro+ Arg
for some A € K. Then

det(B) = Z sign(¢)a1e(1)(a2g(2) + Aa1(2))@34(3) - - - Ang(n)

¢ESh
= Z sign(¢)a1¢(1)a2¢(2) «++ Ong(n)
¢ESh
A Z Sign(@)a14(1)@14(2) - - - Ing(n)-

$ESn

Now the first term in this sum is det(A), and the second is A det(C'), where C' is
a matrix in which the first two rows are equal. Hence det(C) = 0 by (iil), and
det(B) = det(A).

(v) Easy. Note that this holds even when the scalar A = 0.
O

Definition 11.4. A matrix is called upper triangular if all of its entries below the
main diagonal are zero; that is, (a;;) is upper triangular if a;; = 0 for all i > j.

The matrix is called diagonal if all entries not on the main diagonal are zero; that
iS, Qi; = 0 for ¢ 75]

3 0 —1f 00 0
Example 11.5. |0 —1 —11 | is upper triangular, and [ 0 17 0 | is diagonal.
0 0 =25 0 0 -3

Corollary 11.6. If A = (ai;) is upper triangular, then det(A) = a11a22 . .. any s the
product of the entries on the main diagonal of A.

Proof. This is not hard to prove directly from the definition of the determinant.
Alternatively, we can apply row operations (R1) to reduce the matrix to the diagonal
matrix with the same entries a;; on the main diagonal, and then the result follows
from parts ({if) and of the theorem. O

The above theorem and corollary provide the most efficient way of computing
det(A), at least for n > 3. (For n = 2, it is easiest to do it straight from the definition.)
Use row operations (R1) and (R2) to reduce A to upper triangular form, keeping
track of changes of sign in the determinant resulting from applications of (R2), and

then use Corollary
Example 11.7.

0112 1211 1 21 1
1211 ro$>r] 011 21'3%13721‘1 01 1 2
2131 ~ 2131 - 0 =31 -1
1242 1242 1 2 4 2

1 211 1211 121 1

riorgr; |00 1 1 2 | rgors43r, (001 1 2{ramra=$rs |01 1 2

- 0 =31 -1 - 0045 004 5

0031 0031 000 -4

We could have been a little more clever, and stopped the row reduction one step before
the end, noticing that the determinant was equal to |4 7] = 11.

Definition 11.8. Let A = (a;;) be an m x n matrix. We define the transpose A' of
A to be the n x m matrix (b;;), where b;j; = aj; for 1 <i<n, 1 <j<m.
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-2

T 1
1 35
For example, (_2 0 6) = g

0

6

Theorem 11.9. Let A = (a;;) be an n x n matriz. Then det(AT) = det(A).
Proof. Let AT = (b;;) where b;; = aj;. Then

det( AT Z sign(¢ b1¢ bQ¢(2) e bn¢(n)
@ESn

Z Slgn (1)14¢(2)2 - - - Ap(n)n-
¢ES‘IL

Now, by rearranging the terms in the elementary product, we have

Ap(1)10¢(2)2 - - - Ap(n)n = A1p=1(1)@26=1(2) - - - Angp=1(n)>
where ¢! is the inverse permutation to ¢. Notice also that if ¢ is a composition
T10Ty0---o7, of transpositions 7;, then ¢! =7, 0---0omom (because each T; o 7; is
the identity permutation). Hence sign(¢) = sign(¢~!). Also, summing over all ¢ € S,
is the same as summing over all ¢! € S,,, so we have

det( AT Z sign(¢ a1¢71(1)a2¢71(2) c Qg1 (n)
$ESn

= Z sign(gb*l)a1¢71(1)a2¢71(2) e Upp1(y) = det(A).
¢~1ESy,
[

If you find proofs like the above, where we manipulate sums of products, hard to
follow, then it might be helpful to write it out in full in a small case, such as n = 3.
Then

det(A") = b11boobss — bi1bazbss — bi2ba1bss
+ b12b23b31 + b13b21b32 — b13b22b31
= (11022033 — 411032023 — 121012033
+ ag1a32a13 + az1a12023 — 31022013
= (11022033 — 411023032 — 412021033
+ a12a23a31 + a13a21a32 — A1302203]
= det(A).

Corollary 11.10. All of Theorem remains true if we replace rows by columns.

Proof. This follows from Theorems and because we can apply column
operations to A by transposing it, applying the corresponding row operations, and
then re-transposing it. O

We are now ready to prove one of the most important properties of the determinant.
Theorem 11.11. For an n x n matriz A, det(A) = 0 if and only if A is singular.

Proof. A can be reduced to row reduced echelon form by using row operations (R1),
(R2) and (R3). By Theorem [9.11] none of these operations affect the rank of A,
and so they do not affect whether or not A is singular (remember ‘singular’ means
rank(A) < n; see definition after Corollary . By Theorem they do not affect
whether or not det(A) = 0. So we can assume that A is in row reduced echelon form.

Then rank(A) is the number of non-zero rows of A, so if A is singular then it has
some zero rows. But then det(A) = 0. On the other hand, if A is nonsingular then, as
we saw in Section the fact that A is in row reduced echelon form implies that
A=1I,,s0det(A) =1#0. O
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11.3 The determinant of a product

12

Example 11.12. Let A = <3 9

> and B = (‘21 _01>. Then det(A) = —4 and

01
5 2
In fact, in general there is no simple relationship between det(A + B) and det(A),
det(B).

However, AB = (

det(B) = 2. We have A+ B = ( ) and det(A + B) = —5 # det(A) + det(B).

3 —1

1 _3)7 and det(AB) =—-8= det(A) det(B)

In this subsection, we shall prove that this simple relationship holds in general.

Recall from Section the definition of an elementary matrix E, and the
property that if we multiply a matrix B on the left by F, then the effect is to apply
the corresponding elementary row operation to B. This enables us to prove:

Lemma 11.13. If E is an n X n elementary matriz, and B is any n X n matriz, then
det(EB) = det(E) det(B).

Proof. E is one of the three types E(n)} i Bn ) or E(n )A , and multiplying B on
the left by E has the effect of applying (R1), (R2) or (R3) to B, respectively. Hence,
by Theorem det(EB) = det(B), — det(B), or Adet(B), respectively. But by
considering the special case B = I, we see that det(E) = 1,—1 or A, respectively,
and so det(EB) = det(F)det(B) in all three cases. O

Theorem 11.14. For any two n X n matrices A and B, we have
det(AB) = det(A) det(B).

Proof. We first dispose of the case when det(A) = 0. Then we have rank(A) < n
by Theorem Let T1,T5: V. — V be linear maps corresponding to A and
B, where dim(V) = n. Then AB corresponds to 71T (by Theorem [8.12).
Corollary rank(A) = rank(77) < n implies that 7} is not surjective. But then
T T> cannot be surjective, so rank(7175) = rank(AB) < n. Hence det(AB) = 0 so
det(AB) = det(A) det(B).

On the other hand, if det(A) # 0, then A is nonsingular, and hence invertible,
so by Theorem A is a product E1Es...E, of elementary matrices ;. Hence
det(AB) = det(E1Es ... E,B). Now the result follows from the above lemma, because

det(AB) = det(E7)det(Esy - - - E.B)
= det(E;) det(E2) det(Es - - - E.B)
= det(E) det(Eg) -det(E,) det(B)
=det(E1Ey - - - Ey)det(B)
= det(A) det(B).

11.4 Minors and cofactors

Definition 11.15. Let A = (a;;) be an n x n matrix. Let A;; be the (n —1) x (n—1)
matrix obtained from A by deleting the ith row and the jth column of A. Now let
M;j = det(A;;). Then M;; is called the (i, j)th minor of A.

210 32 10
Example 11.16. f A= |3 —1 2|, then A5 = and Az = , and
5 _9 0 50 -1 2

SO M12 = —10 and M31 = 2.
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Definition 11.17. We define ¢;; to be equal to M;; if i + j is even, and to —M;; if
1+ j is odd. Or, more concisely,

Cz‘j = (—1)i+‘jMij = (—1)i+j det(Al-j).
Then c¢;; is called the (4, j)th cofactor of A.

Example 11.18. In the example above,

-1 2 3 2 3 —1
C11—‘_2 O‘_4’ 612——‘5 0’—10, 013—‘5 _2‘——17
1 0 20 2 1
621——’_2 0‘—0, 622—’5 O’_O’ 623——’5 _2‘—9,
1 0 20 2 1
c31 = ‘_1 2‘ =2, 032——’3 2’ = —4, C33 = ‘3 _1‘ = —5.

The cofactors give us a useful way of expressing the determinant of a matrix in
terms of determinants of smaller matrices.

Theorem 11.19. Let A be an n x n matriz.
(i) (Expansion of a determinant by the ith row.) For any i with 1 < i < n, we have

n
det(A) = a;1C;1 + Q;2Ci2 + - + QinCin = E ;5 Cij-
Jj=1

(ii) (Expansion of a determinant by the jth column.) For any j with 1 < j <n, we
have

n
det(A) = ayjcrj + agjea; + -+ + apjenj = E ijCij-
i=1

For example, expanding the determinant of the matrix A above by the first row,
the third row, and the second column give respectively:

det(A) = 2x44+1x1040x—-1 = 18
det(A) = 5x2+-2x —-4+0x -5 = 18
det(4A) = 1x10+—-1x0+—-2x—4 = 18.

Proof of Theorem [11.19. By definition, we have

det(A) = Z sign(@)a14(1)@2¢(2) - - - Ang(n) (%)
$ESH

Step 1. We first find the sum of all of those signed elementary products in the sum
(*) that contain ay,. These arise from those permutations ¢ with ¢(n) = n; so the
required sum is

> sign(é)apn)aze(2) - - - Aoy
PESH
#(n)=n

= Qnn Z sign(@)a1(1)@2p(2) - - - An—-1(n—1)
¢€Sn71

= annMpn = annCon.

Step 2. Next we fix any ¢ and j with 1 <4,j5 < n, and find the sum of all of those
signed elementary products in the sum (x) that contain a;;. We move row r; of A to
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r, by interchanging r; with r;1,r;42,...,r, in turn. This involves n — ¢ applications
of (R2), and leaves the rows of A other than r; in their original order. We then move
column c; to ¢, in the same way, by applying (C2) n — j times. Let the resulting
matrix be B = (b;;) and denote its minors by N;j. Then by, = a;j, and Ny, = M;;.
Furthermore,

det(B) = (=1)*"""J det(A) = (—1)"" det(A),

because (2n —i — j) — (i + j) is even.
Now, by the result of Step 1, the sum of terms in det(B) involving by, is

_ _ (_1\it
bpn Nnn = aijMi; = (=1)" aijeqy,

and hence, since det(B) = (—1)"™/ det(A), the sum of terms involving a;; in det(A) is
Ai;Cij.

Step 3. The result follows from Step 2, because every signed elementary product
in the sum (*) involves exactly one array element a;; from each row and from each
column. Hence, for any given row or column, we get the full sum (*) by adding up the
total of those products involving each individual element in that row or column. [

Example 11.20. Expanding by a row or column can sometimes be a quick method
of evaluating the determinant of matrices containing a lot of zeros. For example, let

9 0 2 6
1 2 9 -3
A= 0 0-20
-10 -5 2
90 6
Then, expanding by the third row, we get det(A) = —2 ’ 31 8 —23 , and then expanding
by the second column, det(A) = —2 x 2 ‘ 98 ‘ = —96.

11.5 The inverse of a matrix using determinants

Definition 11.21. Let A be an n x n matrix. We define the adjugate matrix adj(A)
of A to be the n x n matrix of which the (4, j)th element is the cofactor cj;. In other
words, it is the transpose of the matrix of cofactors.

The adjugate is also sometimes called the adjoint. However, the word “adjoint” is
also used with other meanings, so to avoid confusion we will use the word “adjugate”.

Example 11.22. In the example above,

2 1 0 4.0 2
A=(3 -12], adja)=[10 0 —4
5 —2 0 ~19 -5

The adjugate is almost an inverse to A, as the following theorem shows.
Theorem 11.23. A adj(A) = det(A)I, = adj(A) A

Proof. Let B = A adj(A) = (b;j). Then b;; = Y p_; aixcir = det(A) by Theorem
(expansion by the ith row of A). For i # j, bjj = Y, _; aikcjk, which is the determinant
of a matrix C obtained from A by substituting the ith row of A for the jth row.
But then C' has two equal rows, so b;; = det(C) = 0 by Theorem [11.3(iii). Hence
A adj(A) = det(A)I,. A similar argument using columns instead of rows gives
adj(A) A = det(A)I,,. O

Example 11.24. In the example above, check that A adj(A) = adj(A) A = 1815.
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Corollary 11.25. If det(A) # 0, then A™" = g5 adj(A).

(Theorems [10.2f and [11.11]imply that A is invertible if and only if det(A) # 0.)

Example 11.26. In the example above,

-1

2 1 0 1 4 0 2
3 -1 2 =1z 10 0 -4 ],
5 -20 -19 =5
and in the example in Section
321 3 —-11 5
A=|(413], adj(Ad)=|-18 16 —5|, det(A)=—25,
216 2 1 -5

and so A™! = — L adj(A).

For 2 x 2 and (possibly) 3 x 3 matrices, the cofactor method of computing the
inverse is often the quickest. For larger matrices, the row reduction method described
in Section [I0]is quicker.

11.6 Cramer’s rule for solving simultaneous equations

Given a system Ax = J of n equations in n unknowns, where A = (a;;) is non-singular,
the solution is x = A‘lﬁ. So the ith component z; of this column vector is the ith
row of A~!'3. Now, by Corollary [11.25] A~! = ﬁm) adj(A), and its (i, j)th entry is
cji/ det(A). Hence

n

1
T det(A) Z;Cjibj '

Now let A; be the matrix obtained from A by substituting S for the ith column of A.
Then the sum Z?Zl cjibj is precisely the expansion of det(4;) by its ith column (see
Theorem [11.19)). Hence we have x; = det(A4;)/det(A). This is Cramer’s rule.

This is more of a curiosity than a practical method of solving simultaneous
equations, although it can be quite quick in the 2 x 2 case. Even in the 3 x 3 case it
is rather slow.

Example 11.27. Let us solve the following system of linear equations:

2x + z= 1
y — 2z = 0
r+y+ z= -1
Cramer’s rule gives
20 1 1 0 1
det(A) =10 1 —2| =5, det(A;)=1]0 1 —2| =4
11 1 -1 1 1
2 1 1 20 1
det(AQ): 0 0 —2|=-6, det(Ag): 01 0|=-3
1 -1 1 11 -1

so the solution is z = %, Yy = —g, z=—

Ul
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12 Change of basis and equivalent matrices

We have been thinking of matrices as representing linear maps between vector spaces.
But don’t forget that, when we defined the matrix corresponding to a linear map
between vector spaces U and V, the matrix depended on a particular choice of bases
for both U and V. In this section, we investigate the relationship between the matrices
corresponding to the same linear map 7: U — V, but using different bases for the
vector spaces U and V. We first discuss the relationship between two different bases
of the same space. Assume throughout the section that all vector spaces are over the
same field K.

Let U be a vector space of dimension n, and let ey, ..., e, and €/,... e}, be two
bases of U. The matrix P of the identity map Iyy: U — U using the basis ey, ..., e,
in the domain and e/, ..., €/, in the range is called the change of basis matriz from
the basis of e;s to the basis of €/s.

Let us look carefully what this definition says. Taking P = (o;;), we obtain from

Section R.3l

n
Iy(ej) =e; = Zaije; for 1 <j<n. (%)
i=1
In other words, the columns of P are the coordinates of the “old” basis vectors e;
with respect to the “new” basis €.

Proposition 12.1. The change of basis matriz is invertible. More precisely, if P is
the change of basis matriz from the basis of ;s to the basis of €;s and Q is the change
of basis matriz from the basis of €s to the basis of e;s then P = Q1.

Proof. Consider the composition of linear maps Iy7: U v,y v,y using the basis of
e}s for the first and the third copy of U and the basis of e;s for the middle copy of U.
The composition has matrix I,, because the same basis is used for both domain and
range. But the first I;; has matrix @ (change of basis from es to e;s) and the second
Iy similarly has matrix P. Therefore by Theorem I, = PQ.

Similarly, I, = QP. Consequently, P = Q™. ]
Example 12.2. Let U = R3, )

e = (1,0 ,1,0), €5 = (0,0,1) (the standard
basis) and e; = (0,2,1), e = (1,1,0), e

ey = (0
(1,0,0). Then

11
10
00

The columns of P are the coordinates of the “old” basis vectors e, ey, e3 with respect
to the “new” basis €], €}, €.

||
_= N O

As with any matrix, we can take a column vector of coordinates, multiply it by
the change of basis matrix P, and get a new column vector of coordinates. What does
this actually mean?

Proposition 12.3. With the above notation, let v € U, and let v and v’ denote
the column vectors associated with v when we use the bases ey, ... e, and €,... €},
respectively. Then Pv =v'.

Proof. This follows immediately from Proposition applied to the identity map
Iy. O

This gives a useful way to think about the change of basis matrix: it is the matrix
which turns a vector’s coordinates with respect to the “old” basis into the same

vector’s coordinates with respect to the “new” basis.
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Now we will turn to the effect of change of basis on linear maps. let T: U — V be
a linear map, where dim(U) = n, dim(V) = m. Choose a basis e1,...,e, of U and a
basis fi,...,f, of V. Then, from Section we have

m
T(ej) = Zaijfi for 1 < j <n
i=1
where A = (a;5) is the m x n matrix of T with respect to the bases {e;} and {f;} of
U and V.

Now choose new bases €],...,€e), of U and f],....f/ of V. There is now a new
matrix representing the linear transformation 7"

T(e;) = Zbijfz{ for 1 <j<n,

=1

where B = (b;;) is the m x n matrix of T" with respect to the bases {e;} and {f/} of
U and V. Our objective is to find the relationship between A and B in terms of the
change of basis matrices.

Let the n x n matrix P = (0;;) be the change of basis matrix from {e;} to {e}},
and let the m x m matrix @ = (7;;) be the change of basis matrix from {f;} to {f/}.

v

Matrix A
T

—_

Matrix B

Theorem 12.4. With the above notation, we have BP = QA, or equivalently B =
QAP

Proof. By Theorem BP represents the composition of the linear maps I using
bases {e;} and {e]} and T using bases {e} and {f/}. So BP represents T using bases
{e;} and {f/}. Similarly, QA represents the composition of 7" using bases {e;} and
{f;} and Iy using bases {f;} and {f/}, so QA also represents T" using bases {e;} and
{f!}. Hence BP = QA. O

Another way to think of this is the following. The matrix B should be the matrix
which, given the coordinates of a vector u € U with respect to the basis {e]}, produces
the coordinates of T'(u) € V with respect to the basis {f/}. On the other hand,
suppose we already know the matrix A, which performs the corresponding task with
the “old” bases {e;} and {ff}. Now, given the coordinates of some vector u with
respect to the “new” basis, we need to:

(i) Find the coordinates of u with respect to the “old” basis of U: this is done by
multiplying by the change of basis matrix from {e}} to {e;}, which is P~1;

(ii) find the coordinates of T'(u) with respect to the “old” basis of V: this is what
multiplying by A does;

(iii) translate the result into coordinates with respect to the “new” basis for V; this
is done by multiplying by the change of basis matrix Q.

Putting these three steps together, we again see that B = QAP L.
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Corollary 12.5. Two m xn matrices A and B represent the same linear map from an
n-dimensional vector space to an m-dimensional vector space (with respect to different
bases) if and only if there exist invertible n x n and m x m matrices P and Q with
B=QAP.

Proof. Tt follows from Theorem that A and B represent the same linear map if
there exist change of basis matrices P and Q with B = QAP™!, and by Propositionm
the change of basis matrices are precisely invertible matrices of the correct size. By
replacing P by P~!, we see that this is equivalent to saying that there exist invertible
Q, P with B =QAP. O

Definition 12.6. Two m X n matrices A and B are said to be equivalent if there
exist invertible P and ) with B = QAP.

It is easy to check that being equivalent is an equivalence relation on the set K™"
of m x n matrices over K. We shall show now that equivalence of matrices has other
characterisations.

Theorem 12.7. Let A and B be m xn matrices over K. Then the following conditions
on A and B are equivalent.

(i) A and B are equivalent.
(ii) A and B represent the same linear map with respect to different bases.
(iii) A and B have the same rank.

(iv) B can be obtained from A by application of elementary row and column operations.

Proof. & : This is true by Corollary

= : Since A and be both represent the same linear map T, we have
rank(A) = rank(B) = rank(T).

= : By Theorem if A and B both have rank s, then they can both

be brought into the form
I, | Ogn-
E. — s s,n—s >
B ( Omfs,s Omfs,nfs

by elementary row and column operations. Since these operations are invertible, we
can first transform A to E, and then transform E, to B.

= : We saw in Section that applying an elementary row operation to
A can be achieved by multiplying A on the left by an elementary row matrix, and
similarly applying an elementary column operation can be done by multiplying A
on the right by an elementary column matrix. Hence implies that there exist

elementary row matrices Ry, ..., R, and elementary column matrices C',...,Cs with
B =R, --RACY --- Cs. Since elementary matrices are invertible, Q = R,.--- R; and
P =(Cy---Cs are invertible and B = QAP. O

In the above proof, we also showed the following:

Proposition 12.8. Any m x n matriz is equivalent to the matriz Es defined above,
where s = rank(A).

The form FEj is known as a canonical form for m x n matrices under equivalence.
This means that it is an easily recognizable representative of its equivalence class.
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12.1 Similar matrices

In the previous part we studied what happens to the matrix of a linear map T: U — V
when we change bases of U and V. Now we look at the case when U = V', where
we only have a single vector space V', and a single change of basis. Surprisingly, this
turns out to be more complicated than the situation with two different spaces.

Let V be a vector space of dimension n over the field K, and let T: V' — V be a
linear map. Now, given any basis for V, there will be a matrix representing T with
respect to that basis.

Let eq,...,e, and €,..., e}, be two bases of V, and let A = (a;;) and B = (b;5)
be the matrices of 7' with respect to {e;} and {e}} respectively. Let P = (oy;) be
the change of basis matrix from {e}} to {e;}. Note that this is the opposite change
of basis to the one considered in the last section. Different textbooks adopt different
conventions on which way round to do this; this is how we’ll do it in this module.

Then Theorem applies, and with both @ and P replaced by P~! we find:

Theorem 12.9. With the notation above, B = P~1AP.

Definition 12.10. Two n X n matrices over K are said to be similar if there exists
an n X n invertible matrix P with B = P~ LAP.

So two matrices are similar if and only if they represent the same linear map
T:V — V with respect to different bases of V. It is easily checked that similarity is
an equivalence relation on the set of n x n matrices over K.

We saw in Theorem that two matrices of the same size are equivalent if and
only if they have the same rank. It is more difficult to decide whether two matrices
are similar, because we have much less flexibility - there is only one basis to choose,
not two. Similar matrices are certainly equivalent, so they have the same rank, but
equivalent matrices need not be similar.

10 11
Example 12.11. Let A = (0 1> and B = <0 1).

Then A and B both have rank 2, so they are equivalent. However, since A = I,
for any invertible 2 x 2 matrix P we have P"'AP = A, so A is similar only to itself.
Hence A and B are not similar.

To decide whether matrices are similar, it would be helpful to have a canonical
form, just like we had the canonical form Ey in Section [12] for equivalence. Then we
could test for similarity by reducing A and B to canonical form and checking whether
we get the same result. But this turns out to be quite difficult, and depends on the
field K. For the case K = C (the complex numbers), we have the Jordan Canonical
Form, which Maths students learn about in the Second Year.

13 Eigenvectors and eigenvalues
Recall that A = (a;j) is diagonal if a;; = 0 for i # j.

Definition 13.1. A matrix which is similar to a diagonal matrix is said to be
diagonalisable.

We shall see, for example, that the matrix B in Example is not diagonalisable.

It turns out that the possible entries on the diagonal of a matrix similar to A can
be calculated directly from A. They are called eigenvalues of A and depend only on
the linear map to which A corresponds, and not on the particular choice of basis.
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Definition 13.2. Let T: V — V be a linear map, where V is a vector space over
K. Suppose that for some non-zero vector v € V and some scalar A € K, we have
T(v) = Av. Then v is called an eigenvector of T', and A is called the eigenvalue of T
corresponding to v.

Note that the zero vector is not an eigenvector. (This would not be a good idea,
because 70 = A0 for all A\.) However, the zero scalar 0x may sometimes be an
eigenvalue (corresponding to some non-zero eigenvector).

Example 13.3. Let T: R? — R? be defined by T'(a;,az2) = (2a1,0). Then T(1,
2(1,0), so 2 is an eigenvalue and (1,0) an eigenvector. Also 7'(0,1) = (0,0) = 0(
so 0 is an eigenvalue and (0, 1) an eigenvector.

0) =
0,1),

In this example, notice that in fact (o, 0) and (0, ) are eigenvectors for any a # 0.
In general, it is easy to see that if v is an eigenvector of T', then so is av for any
non-zero scalar a.

Let eq,..., e, be a basis of V, and let A = (o) be the matrix of T with respect
to this basis. As in Section [8.3] to each vector v.= A\je1 +- -+ A€, € V, we associate
its column vector of coordinates

A1

A e K™,

<
I

An
Then, by Proposition for u,v € V, we have T'(u) = v if and only if Au = v, and

in particular
T(v) =Av < Av = \v.

So it will be useful to define the eigenvalues and eigenvectors of a matrix, as well
as of a linear map.

Definition 13.4. Let A be an n X n matrix over K. Suppose that, for some non-zero
column vector v € K™! and some scalar A € K, we have Av = \v. Then v is called
an eigenvector of A, and A is called the eigenvalue of A corresponding to v.

It follows from Proposition that if the matrix A corresponds to the linear
map 7', then A is an eigenvalue of 7" if and only if it is an eigenvalue of A. It follows
immediately that similar matrices have the same eigenvalues, because they represent
the same linear map with respect to different bases. We shall give another proof of
this fact in Theorem [13.9 below.

Given a matrix, how can we compute its eigenvalues? Certainly trying every vector
to see whether it is an eigenvector is not a practical approach.

Theorem 13.5. Let A be an n x n matriz. Then X is an eigenvalue of A if and only
if det(A — A1) = 0.

Proof. Suppose that X is an eigenvalue of A. Then Av = Av for some non-zero
v € K™! This is equivalent to Av = AI,,v, or (A — AI,)v = 0. But this says exactly
that v is a non-zero solution to the homogeneous system of simultaneous equations
defined by the matrix A — A\I,,, and then by Theorem , A — A, is singular,
and so det(A — AI,,) = 0 by Theorem

Conversely, if det(A— AI,,) = 0 then A — A1, is singular, and so by Theorem
the system of simultaneous equations defined by A — AI,, has nonzero solutions. Hence
there exists a non-zero v € K™! with (4 — A,,)v = 0, which is equivalent to
Av = A, v, and so A is an eigenvalue of A. O
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If we treat A as an unknown, we get a polynomial equation which we can solve to
find all the eigenvalues of A:

Definition 13.6. For an n X n matrix A, the equation det(A — x1,) = 0 is called the
characteristic equation of A, and det(A — x1,) is called the characteristic polynomial
of A.

Note that the characteristic polynomial of an n X n matrix is a polynomial of
degree n in x.

The above theorem says that the eigenvalues of A are the roots of the charac-
teristic equation, which means that we have a method of calculating them. Once
the eigenvalues are known, it is then straightforward to compute the corresponding

eigenvectors.
Example 13.7. Let A = (; i) . Then
1—z 2 2
det(A — zly) = 5 4_x:(1—x)(4—m)—10:x -5z —6=(x—6)(x+1).

Hence the eigenvalues of A are the roots of (z — 6)(z + 1) = 0; that is, 6 and —1.
Let us now find the eigenvectors corresponding to the eigenvalue 6. We seek a
non-zero column vector (7! ) such that

() ()=o) (37 5) ()= ()

. . . . 2
Solving this easy system of linear equations, we can take <i1> = <5> to be our
2

. : . 2
eigenvector; or indeed any non-zero multiple of <5>

Similarly, for the eigenvalue —1, we want a non-zero column vector (3 ) such that

12\ [z1) _ 1\ | . 2 2\ (x1\ _ (O
(63 () = () e () () - )
X1 1 .
and we can take ) = 1 to be our eigenvector.
9 _

Example 13.8. This example shows that the eigenvalues can depend on the field K.
Let

—z —1

_ 2
1 _x—x +1,

A= (? 01> Then det(A — xly) =

so the characteristic equation is 2 +1 = 0. If K = R (the real numbers) then this
equation has no solutions, so there are no eigenvalues or eigenvectors. However, if
K = C (the complex numbers), then there are two eigenvalues i and —i, and by a
similar calculation to the one in the last example, we find that (_11) and (}) are
eigenvectors corresponding to ¢ and —i respectively.

Theorem 13.9. Similar matrices have the same characteristic equation and hence
the same eigenvalues.

Proof. Let A and B be similar matrices. Then there exists an invertible matrix P

with B = P~'AP. Then
det(B — 21I,,) = det(P~'AP — zI,)

= det(P1(A — xI,)P)

= det(P~ 1) det(A — xI,,) det(P) (by Theorem

= det(P~1) det(P) det(A — z1,)

= det(A — x1).
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Hence A and B have the same characteristic equation. Since the eigenvalues are the
roots of the characteristic equation, they have the same eigenvalues. O

Since the different matrices corresponding to a linear map 7" are all similar, they
all have the same characteristic equation, so we can unambiguously refer to it also as
the characteristic equation of 71" if we want to.

There is one case where the eigenvalues can be written down immediately.

Proposition 13.10. Suppose that the matrix A is upper triangular. Then the eigen-
values of A are just the diagonal entries a; of A.

Proof. We saw in Corollary [I1.6] that the determinant of A is the product of the
diagonal entries a;;. Hence the characteristic polynomial of such a matrix is H?:]L(Oéii —
x), and so the eigenvalues are the «;;. ]

11
01
is 1. We can now see that A cannot be similar to any diagonal matrix B. Such a
B would also have just 1 as an eigenvalue, and then, by Proposition [L1.6] again, this
would force B to be the identity matrix Iy. But P~'I,P = I, for any invertible matrix
P, so I is not similar to any matrix other than itself! So A cannot be similar to Io,
and hence A is not diagonalisable.

Example 13.11. Let A = ( > . Then A is upper triangular, so its only eigenvalue

The next theorem describes the connection between diagonalisable matrices and
eigenvectors. If you have understood everything so far then its proof should be almost
obvious.

Theorem 13.12. Let T: V — V be a linear map. Then the matrix of T is diagonal
with respect to some basis of V' if and only if V has a basis consisting of eigenvectors
of T.

Equivalently, let A be an n X n matriz over K. Then A is similar to a diagonal
matriz if and only if the space K™ has a basis of eigenvectors of A.

Proof. The equivalence of the two statements follows directly from the correspondence
between linear maps and matrices, and the corresponding definitions of eigenvectors
and eigenvalues.

Suppose that the matrix A = (a;;) of T is diagonal with respect to the basis
eq,...,e, of V. Recall from Section that the images of the ith basis vector of
V' is represented by the ith column of A. But since A is diagonal, this column has
the single non-zero entry a;;. Hence T'(e;) = aj;e;, and so each basis vector e; is an
eigenvector of A.

Conversely, suppose that ey, ..., e, is a basis of V' consisting entirely of eigenvectors
of T. Then, for each i, we have T'(e;) = \;e; for some \; € K. But then the matrix of
A with respect to this basis is the diagonal matrix A = (a;;) with a;; = A; for each
i. O

We now show that A is diagonalisable in the case when there are n distinct
eigenvalues.

Theorem 13.13. Let Aq,...,\. be distinct eigenvalues of T: V. — V, and let
Vi,...,Vy be corresponding eigenvectors. (So T(v;) = Njv; for 1 < i < r.) Then
Vi,...,Vy are linearly independent.

Proof. We prove this by induction on r. It is true for r = 1, because eigenvectors are
non-zero by definition. For r > 1, suppose that for some aq,...,a, € K we have

aivy +azve+ - 4+ a,v, = 0.
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Then, applying T' to this equation gives
Q1A V] + agdovy + - - + ap A vy = 0.
Now, subtracting A; times the first equation from the second gives
ag(A2 — Ap)ve + -+ (A — Ap)v, = 0.

By the inductive hypothesis, va, ..., v, are linearly independent, so a;(A; — A1) =0
for 2 <1 < r. But, by assumption, \; — A\ # 0 for ¢ > 1, so we must have a; = 0 for
1 > 1. But then ayv; = 0, so a3 is also zero. Thus a; = 0 for all ¢, which proves that
vi,...,V, are linearly independent. O

Corollary 13.14. If the linear map T: V — V (or equivalently the n x n matriz A)
has n distinct eigenvalues, where n = dim(V'), then T' (or A) is diagonalisable.

Proof. Under the hypothesis, there are n linearly independent eigenvectors, which
form a basis of V' by Corollary [6.24] The result follows from Theorem O

Example 13.15.

4 5 2 4—z ) 2
A=|-6 -9 —4|. Then |[A—zl3|=| -6 —-9—x —4
6 9 4 6 9 4—z

To help evaluate this determinant, apply first the row operation r3 — rs + ro and
then the column operation co — co — c3, giving

4 —x 5 2 4 —x 3 2
|[A—zl3|=| -6 —-9—2 —4|=| -6 —-5—a —4|,
0 —x — 0 0 —x

and then expanding by the third row we get
A—zl3| = —z((4—2)(=5—2) +18) = —2(2® + 2 — 2) = —2(z + 2)(z — 1)

so the eigenvalues are 0, 1 and —2. Since these are distinct, we know from the above
corollary that A can be diagonalised. In fact, the eigenvectors will be the new basis
with respect to which the matrix is diagonal, so we will calculate these.

In the following calculations, we will denote eigenvectors v, etc. by (% ), where

x1, 2,3 need to be calculated by solving simultaneous equations.
For the eigenvalue A = 0, an eigenvector v, satisfies Av, = 0, which gives the
three equations:

4x1 + dx2 4+ 223 = 0; —6x1 — 929 — 423 = 0; 6x1 + 9x2 + 4z3 = 0.
The third is clearly redundant, and adding twice the first to the second gives 2z1+xo =
1
0 and then we see that one solution is v; = | —2
3

For A =1, we want an eigenvector vy with Av, = v,, which gives the equations
4x1 + dx9 + 213 = 7] —6x1 — 929 — 4dx3 = T9; 6x1 + 922 + dx3 = x3;
or equivalently

3x1 + dx2 + 223 = 0; —6z1 — 1029 — 423 = 0; 6x1 + 9x2 + 3x3 = 0.
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Adding the second and third equations gives x3 + x3 = 0 and then we see that a
1

solution is vy = | —1
1
Finally, for A = —2, Av; = —2v4 gives the equations

6x1 + dxo + 223 = 0; —6x1 — Tx9 — 423 = 0; 6x1 + 9z 4 623 = 0,
1
of which one solution is vq = | —2
2

Now, if we change basis to v;,Vv,, v3, we should get the diagonal matrix with
the eigenvalues 0,1, —2 on the diagonal. We can check this by direct calculation.
Remember that P is the change of basis matrix from the new basis to the old one and
has columns the new basis vectors expressed in terms of the old. But the old basis is
the standard basis, so the columns of P are the new basis vectors. Hence

1 1 1
P=|-2-1 -2
3.1 2

-2
To check this, we first need to calculate P!, either by row reduction or by the
cofactor method. The answer turns out to be

00 0

and, according to Theorem |12.9, we should have P~'AP = [0 1 0
00
r

0 1 1
Ptl=12 1 0],
-1 -2 -1

and now we can check that the above equation really does hold.

Warning! The converse of Corollary is not true. If it turns out that there do
not exist n distinct eigenvalues, then you cannot conclude from this that the matrix
is not diagonalisable. This is really rather obvious, because the identity matrix has
only a single eigenvalue, but it is diagonal already. Even so, this is one of the most
common mistakes that students make.

If there are fewer than n distinct eigenvalues, then the matrix may or may not
be diagonalisable, and you have to test directly to see whether there are n linearly
independent eigenvectors. Let us consider two rather similar looking examples:

111 1 2 -2
Ar=[0-11|, Ay=]0-1 2
00 1 00 1

Both matrices are upper triangular, so we know from Proposition that both
have eigenvalues 1 and —1, with 1 repeated. Since —1 occurs only once, it can only
have a single associated linearly independent eigenvector. (Can you prove that?)

1
Solving the equations as usual, we find that A; and A, have eigenvectors | —2 | and
0
1

—1 |, respectively, associated with eigenvalue —1.
0
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The repeated eigenvalue 1 is more interesting, because there could be one or
two associated linearly independent eigenvectors. The equation A1x = x gives the
equations

Tl + X2 + X3 = T1; —T2 + X3 = T2; T3 = I3,
SO T9 + x3 = —2x9 + x3 = 0, which implies that o = x3 = 0. Hence the only
1
eigenvectors are multiples of [ 0 |. Hence A; has only two linearly independent
0

eigenvectors in total, and so it cannot be diagonalised.
On the other hand, Asx = x gives the equations

T1 + 219 — 213 = 13 —x9 + 273 = T2; T3 = 3,

which reduce to the single equation zo — x3 = 0. This time there are two linearly

1 0
independent solutions, giving eigenvectors | 0 | and | 1 |. So Ao has three linearly
0 1

independent eigenvectors in total, and it can be diagonalised. In fact, using the
eigenvectors as columns of the change of basis matrix P as before gives

10 1 11 -1
P=[01 -1| and we compute P"'=(0 0 1
01 0 0 -1 1
10 0
We can now check that P~'4,P = [0 1 0 |, as expected.
00 —1

13.1 The scalar product — symmetric and orthogonal matrices

Definition 13.16. The (standard) scalar product of two vectors v = (aq,...,a,) and
w = (b1,...,by) in R" is defined to be

n
V-w = E a;b;.
=1

Definition 13.17. A basis bq,...,b, of R™ is called orthonormal if
(i) b;-b; =1for 1 <i<n, and
(ii) b;-bj =0for 1 <i,j5 <n and i # j.

In other words, an orthonormal basis consists of mutually orthogonal vectors of
length 1. For example, the standard basis is orthonormal.

Definition 13.18. An n x n matrix A is said to be symmetric if AT = A.

Definition 13.19. An n x n matrix A is said to be orthogonal if AT = A~ or,
equivalently, if AAT = ATA=1,.

Example 13.20.
3 /3 23 2f3
( ﬁ) and 2/3 =2/3 1/3
1 \/TT‘} 2/3 1/3 _2/3

s

are both orthogonal matrices.
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The main result of this section is that we can diagonalise any real symmetric
matrix A by a real orthogonal matrix. We shall prove this only in the case when A
has distinct eigenvalues; the complete proof will be given in Year 2.

Proposition 13.21. An n x n matriz A over R is orthogonal if and only if the rows
ri,...,ry of A form an orthonormal basis of R™, if and only if the columns cq,...,cy,
of A form an orthonormal basis of R™!.

Proof. Note that an orthogonal matrix A is invertible, which by Theorem [10.2] implies
that its row and column ranks are equal to n, and hence that the rows of A form
a basis of R" and the columns form a basis of R™!. By the definition of matrix
multiplication, AAT = I,, implies that r; -r; =1 and r; - r; = 0 for ¢ # j, and hence
that the rows form an orthonormal basis of R™. Similarly, AT A = I,, implies that the
columns of A form an orthonormal basis of R™!. Conversely, if the rows or columns
of A form an orthonormal basis of R” or R™!, then we get AAT =1, or ATA =1,,
both of which imply that AT = A~1; that is, that A is orthogonal. O

Proposition 13.22. Let A be a real symmetric matriz. Then A has an eigenvalue in
R, and all complex eigenvalues of A lie in R.

Proof. (To simplify the notation, we will write just v for a column vector v in this
proof.)

The characteristic equation det(A — z1,,) = 0 is a polynomial equation of degree n
in x, and since C is an algebraically closed field, it certainly has a root A € C, which
is an eigenvalue for A if we regard A as a matrix over C. We shall prove that any
such A lies in R, which will prove the proposition.

For a column vector v or matrix B over C, we denote by ¥ or B the result of
replacing all entries of v or B by their complex conjugates. Since the entries of A lie
in R, we have A = A.

Let v be a complex eigenvector associated with A\. Then

Av = v (1)
so, taking complex conjugates and using A = A, we get
AV = \V. (2)
Transposing and using AT = A gives
viA =T, (3)
so by and we have
Wiy = viav = awv'lv.

But if v = (a1, a9,...,a,)T, then vIV = ayag + - - - + o, @, which is a nonzero real
number (eigenvectors are nonzero by definition). Thus A = A, so A € R. O

Proposition 13.23. Let A be a real symmetric matriz, and let A1, Ao be two distinct
eigenvalues of A, with corresponding eigenvectors vy, vo. Then vy -vo = 0.

Proof. (As in Proposition [13.22] we will write v rather than v for a column vector in
this proof. So vi - vo is the same as VITVQ.) We have

AV1 = )\1V1 (1) and AVQ = /\QVQ (2)
Transposing (1) and using A = AT gives v{ A = A\;v{], and so
viAvo = \ivivy (3) and similarly vaAvy = Xvavy (4).

Transposing (4) gives v{ Avy = \ov] vy and subtracting (3) from this gives (Ao —
)\1)V1Tv2 = 0. Since A2 — A1 # 0 by assumption, we have v?vz =0. ]
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Combining these results, we obtain the following theorem.

Theorem 13.24. Let A be a real symmetric n X n matriz. Then there exists a real
orthogonal matriz P with P~YAP (= PTAP) diagonal.

Proof. We shall prove this only in the case when the eigenvalues A1, ..., A, of A are all
distinct. By Proposition [[3.22] we have \; € R for all ¢, and so there exist associated
eigenvectors v; € R™!. By Proposition we have v; - v; = vz-ij =0 for ¢ # j.
Since each v; is non-zero, we have v; - v; = a; > 0. By replacing each v; by v;/\/a;
(which is also an eigenvector for )\;), we can assume that v; - v; = 1 for all 7. Since,
by Theorem the v; are linearly independent, they form a basis and hence an
orthonormal basis of R™!. So, by Proposition the matrix P with columns
V1,...,Vy is orthogonal. But Pt AP is the diagonal matrix with entries A, ..., \n,
which proves the result. O

A—(é i’)

det(A— ML) =(1-XN2=9=X-2"-8=(\—4)(A+2),

Example 13.25. Let

Then

so the eigenvalues of A are 4 and —2. Solving Av = Av for A = 4 and —2, we find
corresponding eigenvectors (1) and ( 4 ) Proposition tells us that these vectors
are orthogonal to each other (which we can of course check directly!). Their lengths
are both v/2, so so we divide by them by their lengths to give eigenvectors

1 1
V2 V2
of length 1.

The basis change matrix P has these vectors as columns, so
11
2 2
().
V2 V2
and we can check that PTP = I5 (i.e. P is orthogonal) and that

Aap_ pTap_ (40
PlAP="P AP_<0 _2>.
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