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We have used Rn as a key example so far. This is an example of a vector space. We will not see
the formal definition of this object until later, and so an important point must be made. When we
said Rn, we viewed this as a set of vectors of length n with real entries equipped with an addition
‘+’ (defined as component-wise addition of real numbers) and a scalar multiplication ‘·’ (defined
as multiplication of every entry by some specific scalar λ ∈ R). In Section 6 we will formalise
both of these ideas, with the additional layer of abstraction allowing our results to apply to many
more general settings. But to start with, we will only need the examples of Rn and Cn. The only
difference when working with Cn is that both the entries and our scalars will be from C rather
than just R. The results we prove for finite dimensional vector spaces will apply to these two
examples, as well as others. But we will also see a formal definition of dimension and encounter
infinite dimensional vector spaces, for which some ideas generalise but other results break down.
For this reason it is important to have our examples of Rn and Cn in mind, but also that our
statements can be applied more generally.
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1. The different forms of a linear function

In this section we will see how to convert between three representations of a given linear function.

Definition 1.1. A function f : Rn → Rm is called R-linear if it satisfies two properties:

• f(v + w) = f(v) + f(w) for all v, w ∈ Rn; and
• f(λv) = λf(v) for all v ∈ Rn and λ ∈ R.

Definition 1.2. A function f : Cn → Cm is called C-linear if it satisfies two properties:

• f(v + w) = f(v) + f(w) for all v, w ∈ Cn; and
• f(λv) = λf(v) for all v ∈ Cn and λ ∈ C.

Both R and C are examples of fields. Another example is Q. The exact nature of a field is not
important for now, but we can now provide a definition of linear that allows us to deal with the
examples of Qn, Rn, and Cn simultaneously.

Definition 1.3. Let V and W be vector spaces (technically over a field F). Then a function
f : V →W is called F-linear if it satisfies two properties:

• f(v + w) = f(v) + f(w) for all v, w ∈ V ; and
• f(λv) = λf(v) for all v ∈ V and λ ∈ F.

If, from the context, the field F is clear, then we will talk about the function f being linear and
omit the notation of F.

Our focus in this section is to see three different ways to represent a linear map, and under-
stand how to convert between these different forms. These forms generally are not named in the
literature, and so we give informal names to them (and since these are not standard names, you
may find other authors refer to them differently).

Example 1.4. Let f : R3 → R2 be given by f(x, y, z) = (3x, x + y + z). We can check this is
R-linear in two steps. First,

f((x1, y1, z1) + (x2, y2, z2)) = f((x1 + x2, y1 + y2, z1 + z2))

= (3(x1 + x2), x1 + x2 + y1 + y2 + z1 + z2)

= (3x1, x1 + y1 + z1) + (3x2, x2 + y2 + z2)

= f((x1, y1, z1)) + f((x2, y2, z2))

and similarly

f(λ(x1, y1, z1)) = f((λx1, λy1, λz1))

= (3(λx1), λx1 + λy1 + λz1)

= (λ3(x1), λ(x1 + y1 + z1))

= λ(3(x1), (x1 + y1 + z1))

= λf((x1, y1, z1))

which clearly apply to any x1, x2, y1, y2, z1, z2, λ ∈ R.

Example 1.5. Let f : R2 → R3 be given by f(x, y) = (x,−y, 1). Then this is not R-linear. We
can see this by producing a counterexample. This should either be a choice of v, w ∈ R2 such that
f(v +w) 6= f(v) + f(w) or a choice of v ∈ R2 and λ ∈ R such that f(λv) 6= λf(v). Below we give
one option for each such kind of counterexample.

• Let v = (0, 0) = 0 and w = 0. Then f(v + w) = f(0 + 0) = f(0) = (0, 0, 1) whereas
f(v) + f(w) = f(0) + f(0) = (0, 0, 1) + (0, 0, 1) = (0, 0, 2) and so f(v +w) 6= f(v) + f(w).
• Let v = (0, 0) and λ = 2. Then f(λv) = f(0, 0) = (0, 0, 1) whereas λf(v) = 2f(0, 0) =

(0, 0, 2) and so f(λv) 6= λf(v).

Remark 1.6. From these examples, we can see that this definition is useful since it is easy to
compute with, but has the drawback that it might not be immediately obvious that it is a linear
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map2. This first form might be sensible to call the algebraic form of a linear map. Our other
two forms always provide us with a linear map.

The following vectors are so ubiquitous that we give them their own notation.

Definition 1.7. Fix an n ∈ {1, 2, 3, . . .} and choose an i ∈ {1, . . . , n}. Then ei is the vector in
Rn with ith entry 1 and all other entries zero. Another way to phrase this is that the jth entry of
ei is given by the Kronecker delta function δij.

Example 1.8. We first look at the above vectors in Rn for various n.

• In R, the only such vector is e1, with e1 = (1).
• In R2, there are two such vectors, e1 = (1, 0) and e2 = (0, 1).
• In R3 we have e1 = (1, 0, 0), e2 = (0, 1, 0), and e3 = (0, 0, 1).

How this generalises to Rn is now hopefully clear.

Example 1.9. We consider how to write particular vectors using these ei.

• We note that (1, 1, 1) = e1 + e2 + e3.

• Similarly (−1, 5, 0,
√

2) = −e1 + 5e2 +
√

2e4.
• Given e1 +3e2 we know the first two entries of the vector, but do not know which space we

are in. If we were told that this is a vector in R5, we would have that e1+3e2 = (1, 3, 0, 0, 0).

It is now easier to introduce our second form for a linear map by first proving a lemma.

Lemma 1.10. Let V and W be vector spaces over F and f and g be F-linear functions from V
to W such that f(ei) = g(ei) for all valid i. Then f = g.

Note: with the following proof, consider how you would justify each line.

Proof. Pick a vector x =
∑k
i=1 xiei where x1, . . . , xk ∈ F. Then

f(x) = f(x1e1 + . . .+ xkek)

= f(x1e1) + . . .+ f(xkek)

= x1f(e1) + . . .+ xkf(ek)

= x1g(e1) + . . .+ xkg(ek)

= g(x1e1) + . . .+ g(xkek)

= g(x1e1 + . . .+ xkek)

= g(x).

Since x was arbitrary, we have that f and g agree on all inputs, and hence f = g. �

Remark 1.11. The previous lemma says that a linear function is uniquely determined by its
outputs on the vectors ei. Also, for any choice of outputs for the ei there is one, and only one,
linear function with those images.

Example 1.12. Let f : e1 7→ e1 + e3, f : e2 7→ −e2 + e3 and be a linear map from R2 to R3. We
will write f in the first form that we saw. The idea is really that from the previous proof. For
ease of following the steps, we break them into bullet points.

• We wish to work out the image of (x, y) where x, y ∈ R are arbitrary. Let a, b ∈ R.
• First, note that f(ae1) = af(e1) because f is linear. Thus f(ae1) = ae1 + ae3.
• Secondly, f(be2) = bf(e2) and so f(be2) = −be2 + be3.
• Putting these together, f(ae1 + be2) = f(ae1) + f(be2) = ae1 + ae3 − be2 + be3.
• Hence f(a, b) = (a,−b, a+ b). But we have not used any property of our a, b ∈ R and so
f(x, y) = (x,−y, x+ y) for every x, y ∈ R. This is our linear function in algebraic form.

2Any linear map f satisfies f(0) = 0, but show that g : R2 → R2, (x, y) 7→ (0, sin(x)) is not linear in order to
deduce that g(0) = 0 does not guarantee that a map is linear.
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Remark 1.13. Note that {e1, . . . , en} is known as the standard basis of Rn. We could therefore
name this second form the standard basis form of the linear map or more informally perhaps
the ei form of a linear map.

The previous example showed how to change a linear operator in standard basis form into one
of algebraic form. The next example shows us how to convert the other way.

Example 1.14 (Example 1.4 continued). We will see how to convert the linear map above to
standard basis form. The function was f : R3 → R2 given by f(x, y, z) = (3x, x+ y + z).

• Our first question is ‘What size set must we use to determine f?’. The answer is 3.
• From the function, we immediately know the image of e1, e2, and e3. Consider why this

should be our aim, and how we the image of these vectors.
• The correct answer is therefore that f : R3 → R2 is given by f(e1) = 3e1 + e2, f(e2) = e2,

and f(e3) = e2.

Our final form for a linear map is that given by a matrix. It is for their relation to linear
maps that matrices are so scrutinised in courses on linear algebra. We have already justified the
following, but will be so useful to us that we will refer to it as ‘the fact’ from now on.

FACT. Let A be a matrix consisting of n columns c1, . . . , cn each of length m. Then multiplication
by A provides a function taking vectors of length n and outputs vectors of length m. Furthermore:

i) multiplication by A is a linear map; and
ii) we have that Aei = ci for each i = 1, . . . , n.

Remark 1.15. An immediate consequence of (i) is that, given A ∈ Mm×n(R), the function
f : Rn → Rm defined by f : x 7→ Ax is a linear function. We will therefore call it the matrix
form of a linear map.

Part (ii) of the fact is immensely useful. Our first application is to convert between the standard
basis form and the matrix form of a linear map.

Example 1.16. Let A =

(
1 1
0 1

)
and f : R2 → R2, x 7→ Ax. Our aim is to write f in standard

basis form. The information can just be read off from the matrix A. From the fact, we know that
A sends e1 to c1 and e2 to c2, where c1 is the first column of A and c2 is the second column of
A. Thus A(e1) = e1 and A(e2) = e1 + e2. Hence the linear function f is uniquely determined by
knowing that f(e1) = e1 and f(e2) = e1 + e2.

Example 1.17 (Example 1.4 continued). Recall that we know the function f in standard basis
form. We had that f : R3 → R2 is given by f(e1) = 3e1 + e2, f(e2) = e2, and f(e3) = e2. We will
use this knowledge to write f in matrix form.

• First, we wish to determine the dimensions of A. We know that it should represent the
given function f , and that f : R3 → R2. Thus A takes inputs of length 3 and outputs
vectors of length 2. This makes A a matrix with 3 columns, each of length 2. In other
words A is a real 2× 3 matrix, or an element of M2,3(R). This means we wish to find the
columns c1, c2, and c3 of A, each of length 2.

• From part (ii) of the fact, the column ci should be the result of Aei. But we want this
to be f(ei) so that f agrees with multiplication by A. Thus c1 = f(e1), c2 = f(e2), and
c3 = f(e3). This information is given above, and so in this case we have that

A =

(
3 0 0
1 1 1

)
.

Note that we can easily check our answer by directly computing Aei for i = 1, 2, 3.

At this stage we can now convert freely between our three forms of a linear map. For complete-
ness, we give examples converting directly between the algebraic form and the matrix form of a
linear map.
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Example 1.18 (Example 1.4 continued). Recall the function f : R3 → R2 given in algebraic form
by f(x, y, z) = (3x, x+ y + z). We will now write f in matrix form.

• It suffices to find the columns of a matrix A so that f(x) = Ax for all x ∈ R3.
• Using part (ii) of the fact, we can find the ith column of A by computing f(ei).
• In this case we have f(e1) = (3, 1), f(e2) = (0, 1), and f(e3) = (0, 1). Thus we know the

columns of A, and hence know A.

Example 1.19. Let A =

0 0
0 1
1 0

. We will write the map f(x) = Ax in algebraic form.

• We first decide on the domain and codomain of f . Since A takes vectors of length 2 and
outputs vectors of length 3, we will say3 that f : R2 → R3.

• We now wish to compute, given a, b ∈ R, where A sends (a, b). This can be computed
directly from A.

• In this case we have A(a, b) = (0, b, a). Because this computation applies generally, we
have that A(x, y) = (0, y, x) for all x, y ∈ R.

We therefore have, in algebraic form, the function f : R2 → R3, (x, y) 7→ (0, y, x).

It is now natural to question what happens if we try and find the matrix or standard basis form
for a map that is not linear. We first apply the steps above in a naive way, and then see what
goes wrong.

Example 1.20 (Example 1.5 continued). Let f : R2 → R3 be given by f(x, y) = (x,−y, 1). We
will use this information to try to write f in matrix form but this will go wrong. Before
continuing, consider why it will go wrong.

• First, we wish to determine the dimensions of A. We know that it should represent the
given function f , and that f : R2 → R3. Thus A takes inputs of length 2 and outputs
vectors of length 3. This makes A a matrix with 2 columns, each of length 3. In other
words A is a real 3× 2 matrix, or an element of M3,2(R). This means we wish to find the
columns c1 and c2 of A, each of length 3.

• From part (ii) of the fact, the column ci should be the result of Aei. But we want this to
be f(ei) so that f agrees with multiplication by A. Thus c1 = f(e1) and c2 = f(e2). This
information can be computed directly from the function, and so in this case we have that

A =

1 0
0 −1
1 1

 .

At this point we may feel either like toasting our success, or be confused that we have found a
matrix. We might even check our answer by considering where A sends e1 and e2. We will have
that Aei = f(ei). Importantly, though, we do not have that A(x) = f(x) for all x ∈ R2. To see
this we could consider the image of (1,−1) under A and under f . We get A(e1 − e2) = e1 + e2,
but know this cannot be the image of e1 − e2 under f as all images under f have final coordinate
equal to 1. Checking, we see that f(1,−1) = (1, 1, 1).

Remark 1.21. The above example shows us that we must proceed with caution when applying a
method. The method we have produces a matrix that, by construction, agrees with a given function
on the basis vectors {e1, . . . , en}. If the function we were given is linear, then (by Remark 1.11)
we will have found the unique linear function which sends ei to f(ei) for i = 1, . . . , n. But if the
given function is not linear, then we have just found a linear function that agrees with f on the
set {e1, . . . , en} but that will not agree with f for all x ∈ Rn. Note, also, that A and f might
agree on more than just the set {e1, . . . , en}, but there will be an x ∈ Rn where they disagree.

This example actually gives us an alternative way to see whether a given function, in algebraic
form, is linear.

3We are assuming this is a real function, but will discuss this later.
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Example 1.22. In a footnote above we came across the function g : R2 → R2, (x, y) 7→ (0, sin(x)).
We will now see that it is not linear. Such an exercise can help us build intuition for what linear
functions ‘look like’.

• We begin by building a matrix A which agrees with g on the vectors e1 and e2. This is

A =

(
0 0

sin(1) 0

)
.

• Next find a new function, f , so that f(x) = Ax for all x ∈ R2. We can compute f in
algebraic form by applying A to a general vector (x, y). In our case we get that

f(x) =

(
0 0

sin(1) 0

)(
x
y

)
=

(
0

x sin(1)

)
.

• Note that g is linear if and only if g = f . In this case we note that x sin(1) and sin(x)
cannot be the same function since x sin(1) is unbounded whereas sin(x) is bounded. Thus
g is not linear.

We end with a comment on how the above applies to maps that are over C. The terminology
can be a bit loose when using the duality of matrices with linear maps. The issue is that the
matrix appears a concrete object, with entries coming from some field (think: C or R) but when
considering a matrix as a linear map, we should really be giving all of the information for a
function. This means stating the domain, the codomain, and the ‘rule’ (which is almost always
that x is sent to Ax).

Example 1.23 (Example 1.19 continued). In the previous example we were given the matrix but
not told the domain or codomain. We had the matrix

A =

0 0
0 1
1 0


and, with it being a real matrix, we considered this as a function R2 → R3. We could have equally
well considered this as a function from C2 to C3. We can approach this with the same ideas as
above. Note that it sends ei to ci, where ci denotes the ith column of A. Also, since it is a C-linear
map, we then know the image of any (x, y) ∈ C2. This approach matches with what we would
obtain if we used the usual matrix multiplication on vectors from C2.

We end with examples of matrices working over different fields.

Example 1.24. Let A =

(
1 i
0 1 + i

)
, so that we have the C-linear map f : C2 → C2, x 7→ Ax.

We can compute where this sends a general (x, y) ∈ C2 by using the usual matrix multiplication:(
1 i
0 1 + i

)(
a+ bi
c+ di

)
=

(
(a+ bi) + i(c+ di)

(1 + i)(c+ di)

)
=

(
(a− d) + (b+ c)i
(c− d) + (c+ d)i

)
.

Example 1.25. Let A =

(
0 −1
1 0

)
, so that we have the Q-linear map f : Q2 → Q2, x 7→ Ax.

This matrix can also be used to define an R-linear map and a C-linear map. (It turns out that Z
is not a field, and so we will not look at Z-linear maps.) We’ll see this matrix again soon.
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2. Eigenvalues and Eigenvectors

In this section we introduce, for an F-linear operator T , the notions of an eigenvector and
eigenvalue. The ‘eigen’ part comes from the German prefix meaning ‘same’. If we think of a vector
as a direction (technically together with a length) then an eigenvector is one where applying T
leaves the direction unchanged.

Definition 2.1. Let V be a vector space over F and T : V → V a linear operator. Then a vector
v ∈ V with v 6= 0 is called an eigenvector of T if there exists a λ ∈ F such that

T (v) = λv .

The number λ is the called an eigenvalue of T .

This might look like a rather strange concept, and it is not clear if and why such vectors should
exist. In this section we will learn how to compute eigenvalues and eigenvectors of matrices and
explore the limits of our approach.

Example 2.2. Let V = C2 and T : C2 → C2 be given by T (e1) = 2e1 and T (e2) = −3e2. Then
e1 and e2 are eigenvector with eigenvalues λ1 = 2 and λ2 = −3, respectively.

Example 2.3. A less obvious example is T (e1) = e2 and T (e2) = e1. Then one can check that
v1 = e1 + e2 is an eigenvector with eigenvalue λ1 = 1 and v2 = e1 − e2 is an eigenvector with
eigenvalue λ2 = −1.

It is helpful to have a name for the set of eigenvalues for a given linear map.

Definition 2.4. For an F-linear function T , we call the set of eigenvalues of T the spectrum of
T , denoted specT .

At present these eigenvectors appear to have little structure. Our first lemma is a nice obser-
vation about the eigenvectors relating to a specific eigenvalue.

Lemma 2.5. Let T : V → V be a linear operator and λ be an eigenvalue for T . Then the set of
eigenvectors for λ, together with the zero vector, form a subspace of V .

Proof. If v is an eigenvector of T with eigenvalue λ, then for any non-zero α ∈ F, we have that αv
is an eigenvector of T with eigenvalue λ since

T (αv) = αT (v) = αλv = λ(αv).

In a similar way, if v and w are eigenvectors of T with the same eigenvalue λ then v +w is either
zero or an eigenvector with eigenvalue λ since

T (v + w) = T (v) + T (w) = λv + λw = λ(v + w).

Therefore the set of eigenvectors with the same eigenvalue, together with v = 0, form a subspace
of V . �

We next look at how to find the eigenvalues for any given linear operator.

2.1. The characteristic polynomial of a matrix. The following neat observation motivates
our definitions for this section.

Lemma 2.6. Let T : V → V be a linear operator and dimV < ∞. Then λ ∈ F is an eigenvalue
of T if and only if det(T − λI) = 0.

Proof. We perform a series of steps to the eigenvalue equation4

Tv = λv

⇒ Tv − λv = 0

⇒ Tv − (λI)v = 0

⇒ (T − (λI))v = 0

4It is helpful to consider why multiplication by λ can be considered as multiplication by a matrix, and what
this matrix is.
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which are actually if and only if statements. This reduces our eigenvalue equation to a matrix
equation of the form Av = 0, where A = (T − (λI)). Now, consider that det(T − (λI)) 6= 0. This
would imply that A−1 exists, and so our equation would become v = A−10. But A−10 = 0 by
definition, and so v = 0 is the only solution in this case. On the other hand, if det(T − (λI)) = 0,
then the matrix A has non-trivial kernel, and so there is a v 6= 0 such that Av = 0. Thus
there is a v 6= 0 if and only if det(T − (λI)) = 0, and Tv = λv has a solution if and only if
det(T − (λI)) = 0. �

From the above proof, we are now interested in finding all λ such that det(T − (λI)) = 0, and
for each given λ the eigenvectors are then the non-zero elements of ker(T − λI).

Definition 2.7. Let V be vector space over F and T : V → V be a linear operator,

• if dimV <∞ then the characteristic polynomial5 of T is defined as

pT (x) := det(T − xI).

• if λ ∈ F is an eigenvalue of T the corresponding eigenspace is defined as

E(λ) := ker(T − λI).

By now we are likely very happy with how to apply a matrix to a vector. But note that, on an
eigenspace E(λ), the action of T is extremely simple as it is just multiplication by the eigenvalue
λ. This can be stated algebraically, for v ∈ E(λ), as Tv = λv. (To express this one uses the
notation T |E(λ) = λI, where T |E(λ) means restricting the domain of T from V to the subspace
E(λ).)

Lemma 2.6 allows us to compute the eigenvalues of a operator T first, and then we can solve
the system of linear equations (T − λI)v = 0 to find the corresponding eigenvectors. Let us look
at a few simple examples, using V = C2.

Example 2.8. For T =

(
1 0
0 2

)
, we have that

pT (λ) = det

((
1 0
0 2

)
−
(
λ 0
0 λ

))
= det

(
1− λ 0

0 2− λ

)
= (1− λ)(2− λ),

and so we see that the condition pT (λ) = 0 gives λ1 = 1 and λ2 = 2 as eigenvalues of T . To
find an eigenvector v1 = (x, y) with eigenvalue λ1 = 1 we have to find a solution to (T − λ1I)v =
(T − I)v = 0 and this gives (

0 0
0 1

)(
x
y

)
= 0.

This gives the condition y = 0, hence any vector v1 = (x, 0) with x 6= 0 is an eigenvector, so we
can choose for instance x = 1. Similarly for λ2 = 2 we want to find v2 = (x, y) with (T −2I)v2 = 0
which gives (

−1 0
0 0

)(
x
y

)
= 0.

Thus x = 0, and so any vector v2 = (0, y) with any y 6= 0 is an eigenvector and to pick one
we can choose for instance y = 1. So we found that T has two eigenvalues λ1 = 1 and λ2 = 2
with corresponding eigenvectors v1 = (1, 0) and v2 = (0, 1). The eigenvalues are uniquely deter-
mined, but the eigenvectors are only determined up to a multiplicative constant, the corresponding
eigenspaces are E(1) = {(x, 0) , x ∈ F} and E(2) = {(0, y) , y ∈ F}.

We now come back to the example we saw at the end of Section 2.

5The Cayley-Hamilton Theorem is an important result relating to the characteristic polynomial and will be
covered in Linear Algebra 2 and also ODEs 2.
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Example 2.9. For T =

(
0 −1
1 0

)
, we find6

pT (λ) = det

(
−λ −1
1 −λ

)
= λ2 + 1.

Therefore the characteristic polynomial has the two roots λ1 = i and λ2 = −i. So if F = R, then
this operator has no eigenvalues in F, but if F contains i, for instance if F = C, then we have two
eigenvalues. To find an eigenvector v1 = (x, y) with eigenvalue λ1 = i we have to solve (T − i)v = 0
which is (

−i −1
1 −i

)(
x
y

)
= 0.

Thus −ix− y = 0 and x− iy = 0. But the second equation is just −i times the first equation, so
what we find is that y = −ix, so any (x,−ix) is an eigenvector, and we can choose for instance
x = 1 to obtain v1 = (1,−i). Similarly we get for λ2 = −i that(

i −1
1 i

)(
x
y

)
= 0

has the solutions (x, ix), and so choosing x = 1 gives v2 = (1, i).

Remark 2.10. Even when the matrix elements are real, the eigenvalues need not be real. This
means that a operator can have no eigenvalues when we look at it as a function over R, but it will
have eigenvalues over C. This is why we often work over C when dealing with eigenvalues.

Example 2.11. If T =

(
0 −i
i 0

)
, then pT (λ) = λ2 − 1 and so there are two eigenvalues λ1 = 1

and λ2 = −1. The eigenvectors corresponding to λ1 = 1 are determined by(
−1 −i
i −1

)(
x
y

)
= 0

which gives −x − iy = 0 and ix − y = 0 and so y = ix. Choosing x = 1 gives us v1 = (1, i), and
similarly we find for λ2 = −1 that v2 = (i, 1) is an eigenvector.

Remark 2.12. A matrix with complex entries can still have all of its eigenvalues as real numbers,
but then the eigenvectors must be complex.

Example 2.13. If T =

(
1 1
0 1

)
, then

pT (λ) = det

(
1− λ 1

0 1− λ

)
= (λ− 1)2

and so we have one eigenvalue λ1 = 1. The corresponding eigenvectors are determined by(
0 1
0 0

)(
x
y

)
= 0

which gives the one condition y = 0. Hence any vector (x, 0) (with x 6= 0) is an eigenvector and
we can choose for instance v1 = (1, 0). In this example, contrary to the previous ones, we found
only one eigenvalue and a one-dimensional eigenspace.

Example 2.14. With T =

(
2 0
0 2

)
, we get pT (λ) = (2 − λ)2, so λ1 = 2 is the only eigenvalue.

But now we have two linearly independent eigenvectors v1 = e1 and v2 = e2, since T − 2I = 0.

Remark 2.15. In all the cases where we had two eigenvalues, the eigenvectors actually formed a
basis. In these last two examples, we only found one eigenvalue and then in the first case we found
only a one-dimensional eigenspace, so there is no basis of eigenvectors, whereas in the second case
we found two linearly independent eigenvectors which then formed a basis of C2.

6We can also approach this without as much theory. Note that this function sends (a, b) to (−b, a). Thus an

eigenvalue λ would satisfy (−b, a) = λ(a, b), i.e. the equations −b = λa and a = λb. Putting these together give us
that a = −λ2a, which for λ ∈ R gives us only the solution a = b = 0.
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2.2. Algebraic and geometric multiplicity. In order to gain a more systematic understanding
of eigenvalues and eigenvectors, we need to know more about the roots of polynomials. The
following list of properties of polynomials will be proved in courses on complex analysis and
algebra: we only quote them here.

Definition 2.16. A polynomial of degree n over C is an expression of the form

p(x) = anx
n + an−1x

n−1 + . . .+ a1x+ a0

with an, an−1, . . . , a1, a0 ∈ C and an 6= 0. Often we think of such expressions as functions, since
for each x (in R or in C) we can evaluate p(x).

Definition 2.17. For a polynomial p(x) we say that λ1 ∈ C is a root of p if p(λ1) = 0. We can
also talk about the multiplicity of a root. Specifically, if there exists a polynomial q(x) of degree
n−m1 with q(λ1) 6= 0 where

p(x) = (x− λ1)m1q(x),

then λ1 is a root of multiplicity m1 Note that the multiplicity of any root is a natural number.

Theorem 2.18. Every polynomial of degree n has exactly n roots in C, counted with multi-
plicity. In other words, for every polynomial of degree n there exist α, λ1, λ2, . . . , λk ∈ C and
m1,m2, . . . ,mk ∈ N with

p(x) = α(x− λ1)m1(x− λ2)m2 . . . (x− λk)mk

where m1 +m2 + . . .+mk = n.

Remark 2.19. These results rely on working over C rather than R, and follow from the crucial
fact that every polynomial has at least one root in C (called the Fundamental Theorem of Algebra
which was proved by Gauss in his PhD thesis, published in 1799).

The above results allow us to draw some conclusions about eigenvalues.

Lemma 2.20. Let T : Cn → Cn be a linear operator. Then T has at least one and at most n
different eigenvalues.

Proof. One can check that the characteristic polynomial of T is exactly of order n = dimV . (We
do this later, in the proof of Lemma 2.34.) Thus it has at most n different roots. The Fundamental
Theorem of Algebra then states that this polynomial has at least one root in C. �

Definition 2.21. Let T be a linear operator. For each λ ∈ specT we say that

• the geometric multiplicity of λ, denoted mg(λ), is dimE(λ); and
• the algebraic multiplicity of λ, denoted ma(λ), is the multiplicity of the root λ in pT (x).

Note, for any λ ∈ specT , that mg(λ),ma(λ) ∈ N (do consider why these are non-zero).

The algebraic multiplicity can be found by determining all the roots of the characteristic poly-
nomial. The geometric multiplicity can be equivalently given as

mg(λ) = nullity(A− λI).

A natural question is to query how these two multiplicities relate to one another.

Theorem 2.22. Let T be a linear operator and λ ∈ specT . Then mg(λ) ≤ ma(λ).

We will not prove this, but note that in our examples above, in all but one of the cases we had
mg(λ) = ma(λ) for every λ ∈ specT . The exception was Example 2.13 which sent e1 to e1 and e2
to e1 + e2. We then had that λ = 1 was the only eigenvalue and mg(1) = 1 but ma(1) = 2.

Before we dive into the next theorem, on the linear independence of eigenvectors, let us consider
a simple case. Take a linear operator T with two distinct eigenvalues λ1 and λ2 with corresponding
eigenvectors v1 and v2. We will show that v1, v2 are linearly independent. If v1, v2 are linearly
dependent, they are proportional to each other, so they both lie in the same one-dimensional
subspace. That means that if two eigenvectors are linearly dependent, then the intersection of
the corresponding subspaces is at least one-dimensional, E(λ1) ∩ E(λ2) 6= {0}. But if v 6= 0 is in
E(λ1) ∩ E(λ2), then λ1v = T (v) = λ2v and this can only happen if λ1 = λ2. We now see how to
generalise this argument.
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Proposition 2.23. Let T : V → V be a linear operator, dimV = n and {v1, v2, . . . , vk} a set of
eigenvectors with different eigenvalues. Then the set {v1, v2, . . . , vk} is linearly independent.

Proof. We first fix some notation. From our hypotheses, we have that T (vi) = λivi for i = 1, . . . , k
and that λi = λj ⇔ i = j. Let us assume that we can find constants a1, . . . , ak such that

(2.1) a1v1 + . . .+ akvk = 0

where ai 6= 0 for some i ∈ {1, . . . , k}. (Thus our assumption is that {v1, . . . , vk} is linearly
dependent.) Let m denote the largest natural number such that am 6= 0. Thus equation (2.1) can
be seen as

(2.2) a1v1 + . . .+ amvm = 0

where am 6= 0. Our aim will be to show that am = 0, producing a contradiction. Directly
computing, we apply T to equation (2.2) and multiply equation (2.2) by λ1 to obtain

λ1a1v1 + . . .+ λmamvm = 0 and λ1a1v1 + . . .+ λ1amvm = 0

respectively. The difference of these equations is therefore

(2.3) (λ2 − λ1)a2v2 + . . .+ (λm − λ1)amvm = 0.

By assumption, λi − λ1 6= 0 for i = 2, . . . ,m. Hence equation (2.3) is a linear combination with
coefficients (λi − λ1)ai for i ∈ {2, . . . ,m}. Moreover, (λi − λ1)ai = 0⇔ ai = 0 for i ∈ {2, . . . ,m}.
This means we have reduced to have a linear combination

b2v2 + . . .+ bmvm = 0

where bm 6= 0. Applying these steps again will yield a linear combination

c3v3 + . . .+ cmvm = 0

where cm 6= 0. We continue applying the above steps until we obtain an expression of the form
αvm = 0 where α 6= 0. This is a contradiction, as vm 6= 0. �

A more geometric formulation of our goal to find a basis of eigenvectors is to try to decompose
the vector space into eigenspaces, and on each eigenspace the operator T is then just multiplication
by an eigenvalue.

Proposition 2.24. A linear operator T : V → V has a basis of eigenvectors if and only if V can
be decomposed into a direct sum of eigenspaces

V = E(λ1)⊕ E(λ2)⊕ · · · ⊕ E(λk) ,

where T |E(λi) = λiI for i = 1, . . . , k.

Remark 2.25. As mentioned above, the function T |E(λi) is the restriction of the map T to the
subspace E(λi), so that T |E(λi) = λiI. This means that T |E(λi) is a new function with domain
E(λi) which behaves like the map λiI on E(λi). This is just an alternative way of saying E(λi)
is the eigenspace corresponding to λi.

Proof of Proposition 2.24. If we have such a decomposition then we can choose a basis Bi of each
eigenspace and the union of these bases B =

⋃
Bi will be a basis of V which consists of eigenvectors.

On the other hand, if we have a basis of eigenvectors then the direct sum of the eigenspaces is equal
to V . Note that the direct sum notation can be used as a consequence of Proposition 2.23. �

This gives us one important criterium to decide when a operator has a basis of eigenvectors.

Lemma 2.26. Let T : Cn → Cn be a linear operator with n different eigenvalues. Then T has a
basis of eigenvectors.

Proof. If T has n different eigenvalues, then by Proposition 2.23 the corresponding eigenvectors
are linearly independent. But then these n linearly independent vectors must form a basis for
Cn. �
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From this lemma, we see that the possible obstruction to the existence of enough linearly
independent eigenvectors is that the characteristic polynomial can have roots of multiplicity larger
then 1. Then the condition for the existence of a basis of eigenvectors becomes

ma(λ) = mg(λ) , for all λ ∈ specT.

Unfortunately in general this condition can only be checked after one has computed all the eigenvec-
tors. Fortunately, if there are not enough eigenvectors for a basis, there is a natural generalisation
of the concept of an eigenvector, called a root vector. These are dealt with in Linear Algebra 2.
There are precisely as many linearly independent root vectors as on needs to make up for the
difference between the algebraic and geometric multiplicity of an eigenvalue.

2.3. Using eigenvectors to aid computations: diagonalisation. If we have found a basis of
eigenvectors {v1, v2, . . . , vn} for A ∈Mn(C), then we can diagonalise the matrix A. This means
that we can find an invertible matrix C such that C−1AC = D, where D is a diagonal matrix,
i.e., only has nonzero entries on the diagonal. To do so, let

C := (v1 · · · vn)

which has the eigenvectors as columns and (since these form a basis) is invertible. We wish to
determine the form of the matrix C−1AC, and can do so by applying the ideas of Section 1. We
note, for each i = 1, . . . , n, that

ei
C−→ vi

A−→ λivi
C−1

−→ λiei.

From the FACT, we see that the ith column of C−1AC must therefore be λiei. Hence the matrix
C−1AC is diagonal.

Remark 2.27. One can reverse the above argument to show that if A is diagonalisable, then the
column vectors of the matrix C must be eigenvectors and the elements of the diagonal matrix are
the eigenvalues. Since the eigenvalues are uniquely determined, the diagonal matrix is unique up
to reordering of the elements on the diagonal. But the matrix C is not unique, since one can for
instance multiply any column by an arbitrary non-zero number, and still get an eigenvector.

Let us now summarise the method of how to compute eigenvalues and eigenvectors for operators
on finite dimensional vector spaces. We will almost always work over R or C.

(i) We begin by computing the characteristic polynomial pT (x) = det(T − xI).
(ii) Then we have to find all roots of pT (x) with multiplicity. We know that there are n of

them in C. There are now 3 possibilities.
– We have n distinct roots and they all lie in the field F ⊂ C. Then we immediately

know that we can find a basis of eigenvectors.
– There are less than n roots, counted with multiplicity, in the field F. Then we cannot

find a basis of eigenvectors, and T is not diagonalisable.
– All roots are in F (which is always the case if F = C), but some have higher multiplicity

than 1. Then we cannot decide yet whether there is a basis of eigenvectors.
(iii) To find the eigenvectors we have to solve for each eigenvalue λ the system of n linear

equations

(T − λI)v = 0.

We can do this, for example, by using Gaussian elimination. In order to find a basis of
eigenvectors, we must find ma(λ) linearly independent solutions for each λ ∈ specT .

We look at two examples of 3× 3 matrices to see how this works.

Example 2.28. Our first example is given by the following matrix A, which we consider as a
function from R3 to R3.

A =

4 1 −1
2 5 −2
1 1 2
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We begin by computing the characteristic polynomial and its roots.

pA(x) = det(A− xI) = det

4− x 1 −1
2 5− x −2
1 1 2− x


= (4− x) det

(
5− x −2

1 2− x

)
− det

(
2 −2
1 2− x

)
− det

(
2 5− x
1 1

)
= (4− x)[(5− x)(2− x) + 2]− 2(2− x)− 2− 2 + (5− x)

= (4− x)(5− x)(2− x) + 2(4− x)− 8 + 2x+ (5− x)

= (5− x)[(4− x)(2− x) + 1]

= (5− x)[x2 − 6x+ 9] = (5− x)(x− 3)2

These computations may appear confusing at first, but two parts of our approach are common.
First, that we found the determinant by expanding along the first row. Secondly, that we didn’t
multiply out all terms immediately, but instead kept relevant factors which appear in the final
factorisation. This avoids the need to factorise a cubic. We then see that the eigenvalues are
λ1 = 5 and λ2 = 3, and that 5 has algebraic multiplicity 1 and 3 has algebraic multiplicity 2. So
we can’t yet say if the matrix is diagonalisable; we have to see if there are two linearly independent
eigenvectors with eigenvalue 3.

We now look at finding an eigenvector v1 = (x, y, z) with eigenvalue λ1 = 5. Thus v1 is a
solution to the system of 3 linear equations (A− 5I)v1 = 0, and

A− 5I =

−1 1 −1
2 0 −2
1 1 −3

 ≡
−1 1 −1

0 2 −4
0 2 −4

 ≡
−1 1 −1

0 2 −4
0 0 0


where the ‘≡’ sign means that we have simplified the matrix using elementary row operations. In
the first step we added the first row to the third and added 2 times the first row to the second.
In the second step we just subtracted the second row from the third. So the system of equations
is now −x+ y − z = 0 and 2y − 4z = 0, which can be rewritten as

y = 2z and x = y − z = z.

This gives us a one parameter family of solutions, which is what we expect, since eigenvectors
are only defined up to a multiplicative factor. To pick one particularly simple eigenvector we can
choose for instance z = 1, and so obtain

E(5) = span{v1} where v1 = (1, 2, 1).

To find the eigenvectors for λ2 = 3 we proceed along the same lines, with our aim to solve
(A− 3I)v = 0. This gives

A− 3I =

1 1 −1
2 2 −2
1 1 −1

 ≡
1 1 −1

0 0 0
0 0 0


where we have subtracted row one from row three and two times row one from row two. So this
gives just the one equation

x = z − y,
which means that we have two free parameters in the solution, and any vector of the form

v = (z − y, y, z)

for arbitrary (y, z) 6= 0 is an eigenvector. Therefore they form a two dimensional space, and we
just have to pick two that form a basis. One option would be to choose y = 1, z = 0 and then
y = 0, z = 1, so that

v2 = (−1, 1, 0) and v3 = (1, 0, 1)

form a basis of the eigenspace E(3).
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We have found three linearly independent eigenvectors, and therefore A is diagonalisable with

C =

1 −1 1
2 1 0
1 0 1

 and C−1AC =

5 0 0
0 3 0
0 0 3

 .

Notice that C depends on the choices we made for the eigenvectors. If we had chosen differ-
ent eigenvectors, the matrix C would look different but would still diagonalise A. A good final
computation to try is to compute C−1AC with

C =

1 −1 1
0 1 2
1 0 1

 .

Example 2.29. For our second example we will consider

B =

3 −1 1
7 −5 1
6 −6 2

 .

We first compute pB(x).

det(B − xI) = (3− x) det

(
−5− x 1
−6 2− x

)
+ det

(
7 1
6 2− x

)
+ det

(
7 −5− x
6 −6

)
= (3− x)[−(5 + x)(2− x) + 6] + 7(2− x)− 6− 42 + 6(5 + x)

= −(3− x)(5 + x)(2− x) + 7(2− x)

= (2− x)[7− (3− x)(5 + x)]

= (2− x)[x2 + 2x− 8]

= −(x− 2)(x− 2)(x+ 4) = −(x− 2)2(x+ 4)

Hence the eigenvalues are λ1 = −4 with multiplicity 1 and λ2 = 2 with algebraic multiplicity 2.
We then find the eigenvectors for each eigenvalue in turn. For λ1 = −4, we solve (B + 4I)v = 0.
Note

B + 4I =

7 −1 1
7 −1 1
6 −6 6

 ≡
7 −1 1

0 0 0
1 −1 1

 ≡
0 6 −6

0 0 0
1 −1 1


which gives the two equations y = z and x = y − z = 0, so any vector (0, z, z) with z 6= 0 is an
eigenvector. Choosing z = 1 gives us v1 = (0, 1, 1). Now for λ2 = 2, we get

B − 2I =

1 −1 1
7 −7 1
6 −6 0

 ≡
1 −1 1

0 0 −6
0 0 −6

 ≡
1 −1 1

0 0 −1
0 0 0


which gives the equations y = 0 and x + z = 0. These give us only a one parameter family, i.e.,
y is fixed, and once we have chosen z, the value of x is fixed, too. So the eigenspace E(2) is
one-dimensional and spanned by

v2 = (1, 0,−1).

Hence the geometric multiplicity of λ2 = 2 is 1. This means B does not have a basis of eigenvectors,
and cannot be diagonalised.

The second matrix B gave us an example which cannot be diagonalised. The drawback of our
approach is that only at the very end of our computation we actually found out that the matrix is
not diagonalisable. It would be much more efficient if we had some criteria to tell us in advance if
a matrix is diagonalisable. Such criteria can be given if we introduce additional structure, namely
an inner product. This will be the subject of Section 5.
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2.4. Properties of similar matrices.

Definition 2.30. We say that matrices A and B are similar if there exists an invertible matrix
C such that B = C−1AC. We can then also say that A and B are conjugate (by C).

One can check that the notion of being similar is an equivalence relation for square matrices of
a fixed dimension. Many properties are preserved across similar matrices.

Lemma 2.31. Let A,B ∈Mn(F) be similar matrices. Then pA(x) = pB(x).

Proof. Our definition of similar says that B = C−1AC for some invertible C ∈Mn(F). We have

pB(x) = det(B − xI) = det(C−1AC − xI) = det(C−1(A− xI)C)

= det C−1 det(A− xI) detC = det(A− xI) = pA(x). �

An almost identical proof tells us that similar matrices have the same determinant. We now
consider more carefully the coefficients of the characteristic polynomial to gain further insights.

Lemma 2.32. Let A ∈ Mn(F). Then the constant coefficient of pA(x) equals det(A). Further-
more, if A is similar to B, then det(A) = det(B).

Proof. We note from the explicit form of the matrix A− xI that

pA(x) = (−1)nxn + an−1x
n−1 + . . .+ a1x+ a0 where an−1, . . . , a0 ∈ F.

Moreover, from the above expression, a0 = pA(0) = det(A−0I) = detA and so the term a0 in the
characteristic polynomial equals detA. The claim for similar matrices then immediately follows
from Lemma 2.31. �

Definition 2.33. Let A ∈Mn(F). Then the trace of A, denoted trA, is equal to
∑n
i=1 aii.

It is possible to directly show that the similar matrices have the same trace,7 but we will do
this using the coefficients of the characteristic polynomial.

Lemma 2.34. Let A ∈ Mn(F). Then the xn−1 coefficient of pA(x) equals (−1)n−1 tr(A). Fur-
thermore, if A is similar to B, then tr(A) = tr(B).

Proof. We call upon the Leibniz formula for the determinant. Let B := A− xI, so that

det(A− xI) =
∑
σ∈Sn

signσ

n∏
j=1

bσ(j)j

=

n∏
i=1

(aii − x) +
∑

σ′∈Sn\{1}

signσ′
n∏
j=1

bσ′(j)j

where the second line corresponds to taking out the identity permutation. We will now see that
the sum in the second line does not contribute to the coefficients of the xn or xn−1 terms.

We observe that any permutation σ ∈ Sn is a bijection, and so knowing the values of σ on
n − 1 values of j ∈ {1, 2, . . . , n} uniquely determines the remaining one. Hence, a nonidentity
permutation has at least two indices j which it alters, that is σ′(j) 6= j. It follows that no product
in the sum in the latter formula can involve more than n − 2 diagonal elements of A − xI, and
hence the whole sum cannot contribute higher powers of x to pA(x) than xn−2. Now

n∏
i=1

(aii − x) = (−1)nxn + (−1)n−1(a11 + . . .+ ann)xn−1 + . . . ,

from which our statement follows. Lemma 2.31 then implies our second statement. �

Let us summarise the above.

7A nice approach is to show that tr(AB) = tr(BA) by directly computing the relevant entries of the matrices
AB and BA, and then use this result to show that tr(C−1AC) = trA. Hint: make a clever choice for B.
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Proposition 2.35. Let T : V → V be a linear operator and dimV = n. Then

pT (x) = (−1)nxn + (−1)n−1 trT xn−1 + . . .+ detT,

where . . . stands for terms with powers of x between n− 2 and 1, and trT denotes the trace of T .

In particular, for n = 2 Proposition 2.35 describes every term in the characteristic polynomial
pT (x), without omissions.

Suppose we are working with Rn or Cn. Then the Fundamental Theorem of Algebra guarantees
the existence of the roots λ1, λ2, . . . , λn of the characteristic polynomial pT (x), not necessarily
distinct. Then we can factor pT (x) as

pT (x) = (λ1 − x)(λ2 − x) . . . (λn − x).

Comparing this with the claim of Proposition 2.35 we draw the following conclusion.

Lemma 2.36. Let T be a linear operator on Cn or Rn, with (not necessarily distinct) eigenvalues
λ1, . . . , λn. Then

detT =

n∏
i=1

λi, trT =

n∑
i=1

λi.

We have therefore expressed the determinant and trace of a linear operator in terms of its
eigenvalues. We revisit an earlier example to see illustrate this result.

Example 2.37 (Example 2.9 continued). We had the matrix A =

(
0 −1
1 0

)
, and found that

the eigenvalues were i and −i. We also found the eigenvectors (1,−i) and (1, i). Note that
tr(A) = i+ (−i) = 0. We could also now diagonalise A and obtain

D =

(
1 1
−i i

)−1(
0 −1
1 0

)(
1 1
−i i

)
=

1

2

(
1 i
1 −i

)(
0 −1
1 0

)(
1 1
−i i

)
=

(
i 0
0 −i

)
where tr(D) = 0 and det(D) = 1 = det(A) as expected.
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3. Linear combinations and change of basis

We continue working with Rn and Cn, but note that the theory in this chapter applies to a
vector space over any field F. To begin, we consider the idea of writing one basis in terms of
another.

3.1. Linear combinations. Let us start in R2. This is an object where we naturally view
vectors (a, b) as the sum of an x-direction and a y-direction. Another way to say this is that
(a, b) = ae1 + be2. But, of course, we could also work with another basis. Given the basis
S = {(2, 0), (0, 1)}, we note that 0.5a(2, 0)+b(0, 1) is the linear combination that gives the element
(a, b). We now see some other examples of doing this for bases of R2.

Example 3.1. We write a general vector v = (a, b) for the following bases S.

i) S = {(1, 1), (0, 1)}.
ii) S = {(2, 1), (0, 1)}.
iii) S = {(1, 0), (0, 0.5)}.
iv) S = {(2, 0), (1, 1)}.

It is recommended that you attempt these on your own. The solutions are then below8.

The actual ‘skill’ here is solving simultaneous linear equations. But it is worth us dwelling on
this a little longer, to build some intuition. In the following, it is best to think of our examples
Rn and Cn.

Definition 3.2. Let V = Fn. Then the standard basis for V is {e1, e2, . . . , en}, denoted E.

Thus our above example is really writing an element of the standard basis in terms of some
new basis. This inspires a new approach.

Example 3.3. Let V = R2, s1 = (1, 1), s2 = (1,−1), and S = {s1, s2}. We will write a general
element (a, b) in terms of the basis S.

• We begin by writing the element e1 in terms of S. We could do this by solving linear
equations, or note that (1, 1) + (1,−1) = 2e1. This gives us that e1 = 1

2 (1, 1) + 1
2 (1,−1).

• Note that e2 = (1, 1) − (1, 0), and so we can use our solution in the above line to obtain
e2 = (1, 1)− ( 1

2 (1, 1) + 1
2 (1,−1)) = 1

2 (1, 1)− 1
2 (1,−1).

• Thus ae1 + be2 = a( 1
2 (1, 1) + 1

2 (1,−1)) + b( 1
2 (1, 1)− 1

2 (1,−1)) = (a2 + b
2 )s1 + (a2 −

b
2 )s2.

We could also work in the other direction, writing the elements of a basis S in terms of E .

Example 3.4. Let V = R2, s1 = (1, 1), s2 = (1,−1), and S = {s1, s2}. We will write a general
element as1 + bs2 in terms of the standard basis {e1, e2}.

• We have that s1 = (1, 1) = e1 + e2 and s2 = (1,−1) = e1 − e2.
• Thus as1 + bs2 = a(e1 + e2) + b(e1 − e2) = (a+ b)e1 + (a− b)e2.

Note, from LA1a, that having a basis means each vector can be expressed uniquely as a linear
combination in the basis. This means our solutions are the only solutions in each case. Our final
aim is to simplify the mechanical process in the above examples. The following definition is not
standard, but helps us see what is going on above.

Definition 3.5. Let S = {s1, . . . , sn} be an ordered9 basis for V . Then denote the linear combi-
nation

∑n
i=1 aisi by the vector (a1, a2, . . . , an)S.

We now use this definition with respect to our previous examples.

8We solve each in turn.(
a
b

)
= a

(
1
1

)
+ (b− a)

(
0
1

)
,

(
a
b

)
= 1

2
a

(
2

1

)
+ (b− 1

2
a)

(
0

1

)
,(

a

b

)
= a

(
1

0

)
+ 2b

(
0
1
2

)
, and

(
a

b

)
= 1

2
(a− b)

(
2

0

)
+ b

(
1

1

)
.

9This is very important from now on: the bases {v1, v2} and {v2, v1} are distinct for our purposes.
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Example 3.6. Let V = R2, A = {(2, 1), (0, 1)}, B = {(1, 1), (1,−1)}, and E = {e1, e2}. We can
therefore summarise our work above, using our new notation:(
a
b

)
E

=
1

2
a

(
2
1

)
E

+ [b− 1

2
a]

(
0
1

)
E

=

(
1
2a

b− 1
2a

)
A

and

(
a
b

)
A

= a

(
2
1

)
E

+ b

(
0
1

)
E

=

(
2a
a+ b

)
E

;(
a
b

)
E

= [
a

2
+
b

2
]

(
1
1

)
E

+ [
a

2
− b

2
]

(
1
−1

)
E

=

(
a
2 + b

2
a
2 −

b
2

)
B

and

(
a
b

)
B

= a

(
1
1

)
E

+ b

(
1
−1

)
E

=

(
a+ b
a− b

)
E
.

Let us review Example 3.4. We first worked out that s1 was a linear combination of e1 and e2.
Note that once we know this linear combination, we also know as1 in terms of E . Similarly, once
we know s2 in terms of E , then we know bs2 in terms of E . And if we know as1 and bs2 in terms
of E , then we know as1 + bs2 in terms of E . This should remind us of something.

Example 3.7 (Example 3.4 revisited). In our new notation, we showed that(
1
0

)
B

=

(
1
1

)
E

and

(
0
1

)
B

=

(
1
−1

)
E

from which we could obtain the form of a general vector (a, b)B. The key observation is then that
changing between linear combinations is a linear map. That is, we can define the matrix(

1 1
1 −1

)
which sends (1, 0) → (1, 1), (0, 1) → (1,−1) and, because matrix multiplication is linear, sends
(a, b) to (a+ b, a− b). That is, multiplication by this matrix changes linear combinations in B to
linear combinations in E . We could also compute that(

1
0

)
E

=

(
1/2
1/2

)
B

and

(
0
1

)
E

=

(
1/2
−1/2

)
B

to obtain the matrix

(
1/2 1/2
1/2 −1/2

)
which changes linear combinations in E to linear combinations in B.

We now phrase our findings as a definition.

Definition 3.8. Let A and B be bases of a vector space V . Then CBA denotes the change of
basis matrix taking a linear combination in A to the equivalent linear combination in B.

Before covering some theory, we give one more example.

Example 3.9 (Example 3.6 continued). We find CBA directly. We note(
1
0

)
A

=

(
2
1

)
E

=
3

2

(
1
1

)
E

+
1

2

(
1
−1

)
E

and

(
0
1

)
A

=

(
0
1

)
E

=
1

2

(
1
1

)
E
− 1

2

(
1
−1

)
E

so that

CBA =

(
3
2

1
2

1
2 − 1

2

)
which takes a linear combination in A and outputs the corresponding linear combination in B.

These ideas naturally generalise.

Proposition 3.10. Let A = {v1, . . . , vn} and B = {w1, . . . wn} be bases for V = Fn. Then there
exist cij ∈ F such that

v1 = c11w1 + c21w2 + . . .+ cn1wn

v2 = c12w1 + c22w2 + . . .+ cn2wn

...

vn = c1nw1 + c2nw2 + . . .+ cnnwn.

Moreover, given a = (a1, . . . , an)A = (b1, . . . , bn)B = b, we have b = CBAa where (CBA)ij = cij.
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Proof. The equations for v1, . . . , vn follow because B is a basis for V . Let v = (a)A. Then

v = a1v1 + a2v2 + . . .+ anvn

= a1

(
n∑
i=1

ci1wi

)
+ a2

(
n∑
i=1

ci2wi

)
+ . . .+ an

(
n∑
i=1

cinwi

)
= (a1c11 + . . .+ anc1n)w1 + (a1c21 + . . .+ anc2n)w2 + . . .+ (a1cn1 + . . .+ ancnn)wn

= b1w1 + b2w2 + . . .+ bnwn

and so b = CBAa as required. �

We now make some observations about these change of basis matrices.

Lemma 3.11. Let A = {v1, . . . , vn} be a basis for Fn. Then CAA = In, the n×n identity matrix.

Proof. With wi = vi for each i = 1, . . . , n in the above proof, we get the required constants. �

Lemma 3.12. Let A = {v1, . . . , vn} and B = {w1, . . . wn} be bases for Fn. Then CAB = C−1BA.

Proof. Note, since A and B span Fn, that for any a = (a1, . . . , an)A there exists b = (b1, . . . , bn)B
such that (a)A = v = (b)B. Then b = CBAa but also reversing the roles of a and b we have
CABb = a. Thus CABCBAa = a for all a ∈ Fn, i.e. C−1BA = CAB. �

Remark 3.13. This lemma has a powerful application. Assume {w1, . . . , wn} is basis and
{v1, . . . , vn} are defined by vi =

∑
j cjiwj . Then {v1, . . . , vn} is a basis if and only if C = (cij) is

invertible, i.e. det(C) 6= 0. The most concrete approach to prove this is to consider the form of a
matrix CEA and then note what the image and kernel tell us about the columns of this matrix10.

We illustrate this remark with two examples.

Example 3.14. We use examples involving R3 and C3.

• Consider the vectors (x1, 0, 0), (y1, y2, 0), and (z1, z2, z3) ∈ R3. Then these form a basis
for R3 if and only if x1y2z3 6= 0, which occurs exactly when all of x1, y2, z3 are nonzero.

• We can compute that det

1 2 3
4 5 6
7 8 9

 = 0, and so the columns of this matrix are linearly

dependent in C3 and in R3. Note also that det(A) = det(At) for any A ∈ Mn(F), and so
the rows of the given matrix are also linearly dependent in C3 and R3.

Lemma 3.15. Let A and B be bases of Fn. Then CBECEA = CBA.

Proof. Let a ∈ Fn. Then (a)A = (x)E = (b)B. We will show that CBECEAa = CBAa. Since a is
arbitrary, we will then have that CBECEA = CBA as functions and so also as matrices. Calling on
Proposition 3.10, we see that CEA : a → x, CBE : x → b meaning CBECEAa = b; we then note
that also, by definition, CBAa = b. �

The idea of the above proof can be nicely demonstrated with what is known as a commutative
diagram. This consists of arrows (representing maps) going between letters (representing sets).
The diagram is said to be commutative since it does not matter which order we follow sequential
arrows in: the resulting output for any element of a set should be the same. We will also use such
diagrams in the next section.

V V

V

CEA

CBA
CBE

10The image tells us whether the columns span Fn, and a non-trivial kernel says that they are linearly dependent;
the relationship between these is captured by the Rank-Nullity Theorem.
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The following result is a consequence of the more general Proposition 3.26, which we will prove
in the next section.

Proposition 3.16. Let A,B, C be three bases of Fn. Then CCBCBA = CCA.

Proof. We put together our work from the above smaller results, noting that

CCBCBA = (CCECEB)(CBECEA)

= CCE(C
−1
BECBE)CEA

= CCECEA

= CCA. �

This indicates another approach for finding CBA, which is often simpler.

Example 3.17 (Example 3.6 in another way). We find CBA by finding CBECEA. Recall

CBE =

(
1
2

1
2

1
2 − 1

2

)
and CEA =

(
2 0
1 1

)
so that

CBA =

(
1
2

1
2

1
2 − 1

2

)(
2 0
1 1

)
=

(
3
2

1
2

1
2 − 1

2

)
which matches with the answer we found above.

In Section 1 we saw how to find a matrix to represent a linear map. But really this was only
half the story, because we can represent any linear map with respect to any choices of bases A
and B.

Definition 3.18. Let A = {v1, v2, . . . , vn} and B = {w1, w2, . . . , wm} be bases for Fn and Fm
respectively, and T : Fn → Fm be an F-linear map. Then

MBA(T ) = (aij) ∈Mm,n(F)

denotes the matrix representing T with respect to the bases A and B, where the elements
aij ∈ F are defined by

T (vj) =

m∑
i=1

aijwi, for i = 1, 2, . . . , n.

We emphasise again that the existence and uniqueness of the matrix elements aij follows from
the fact that B = {w1, . . . , wm} is a basis, but the computation of these numbers requires usually
some work and will in general lead to a system of nm linear equations.We will now see that the
computations can be rather involved.

Example 3.19. Let T : R2 → R2 be given by T (e1) = 2e1 − e2 and T (e2) = e2. Then

MEE(T ) =

(
2 0
−1 1

)
.

We will now find MBE(T ) where B = {w1, w2} with w1 = (1, 2) and w2 = (1,−1). To do so, we
find constants aij ∈ R such that T (e1) = a11w1 + a21w2 and T (e2) = a12w1 + a22w2. We could
solve this directly (by solving the simultaneous linear equations). Alternatively we could write
these as a matrix equation, i.e.,

T (e1) =

(
2
−1

)
= a11

(
1
2

)
+ a21

(
1
−1

)
=

(
1 1
2 −1

)(
a11
a21

)
and

T (e2) =

(
0
1

)
= a12

(
1
2

)
+ a22

(
1
−1

)
=

(
1 1
2 −1

)(
a12
a22

)
.

These two equations can then be realised as the single matrix equation(
2 0
−1 1

)
=

(
1 1
2 −1

)(
a11 a12
a21 a22

)
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where the first equation above corresponds to the first column, and the second equation to the
second column of this matrix equation. Thus

MBE(T ) =

(
a11 a12
a21 a22

)
=

(
1 1
2 −1

)−1(
2 0
−1 1

)
=
−1

3

(
−1 −1
−2 1

)(
2 0
−1 1

)
=

1

3

(
1 1
5 −1

)
.

The next example illustrates the importance of the bases being used11.

Example 3.20. Let id denote the identity map from R2 to R2, and let A = {(a, c), (b, d)} be a
basis for R2. We will find MEA(id). Note that id : (a, c)→ (a, c) and (b, d)→ (b, d). Thus(

1
0

)
A
→
(
a
c

)
E

and

(
0
1

)
A
→
(
b
d

)
E

which, from our understanding of forming the matrix of a linear map, means

MEA(id) =

(
a b
c d

)
.

Note that this is far from being I2 = MEE(id).

Let us now understand the above examples in complete generality.

Proposition 3.21. Let A = {v1, v2, . . . , vn} and B = {w1, w2, . . . , wm} be bases for Fn and Fm
respectively, and T : Fn → Fm be an F-linear map. Given any v = (x1, . . . , xn)A = (x)A, we then
have that T (v) = (y1, . . . , ym)B = (y)B where y = MBA(T )x.

Proof. We know that T is F-linear and T (vj) =
∑m
i=1 aijwi for j = 1, . . . , n. Hence

T (v) = T (x1v1 + . . .+ xnvn)

= x1T (v1) + . . .+ xnT (vn)

= x1

( n∑
i=1

ai1wi

)
+ . . .+ xn

( n∑
i=1

ainwi

)

=

( n∑
j=1

xja1j

)
w1 + . . .+

( n∑
j=1

xjanj

)
wn

and so yi =
∑n
j=1 aijxj for i = 1, . . . ,m. Hence y = MBA(T )x. �

This proof is really using that a double summand commutes, i.e. that
∑
i

∑
j xiyj =

∑
j

∑
i xiyj .

We’ll soon use this idea again in order to prove Proposition 3.26.

Example 3.22. Let T : R2 → R2 be an R linear map with T (e1) = e1 + 3e2 and T (e2) = −2e1.
With B = {(1, 3), (−2, 0)}, we find MBE(T ). In this case, our computations are simple:

T (e1) =

(
1
3

)
E

=

(
1
0

)
B

; and T (e2) =

(
−2
0

)
E

=

(
0
1

)
B

which gives us a11 = 1, a12 = 0, a21 = 0, and a22 = 1. Hence MBE(T ) = I2.

Lemma 3.23. Let T : Fn → Fn be a bijective linear map and A = {v1, . . . , vn} be a basis of Fn.
If we set B = {T (v1), . . . , T (vn)}, then MBA(T ) = In.

Proof. If wi = T (vi), then the matrix coefficients aij are 1 if i = j and 0 otherwise. �

Remark 3.24. In the above lemma it is vital that T is bijective. If it were not, then the given
set B would not be a basis for Fn.

Lemma 3.25. Let A and B be bases of Fn. Then MBA(id) = CBA.

Proof. The matrix MBA(id) sends the jth vector of A to the jth vector of B. �

11Also, it is very important to note here that our FACT can be useful in computing such matrices, but does not
immediately tell us the columns of a matrix MBA(T ).
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We may query what matrix multiplication relates to in our framework. With the following
theorem, we see that it is actually composition of maps. Note that, in light of the previous lemma,
the following is a generalisation of Lemma 3.15.

Proposition 3.26. Let S : Fm → Fn and T : Fn → Fp be F-linear maps and A, B and C be bases
for Fm, Fn, and Fp respectively. Then

MCA(T ◦ S) = MCB(T )MBA(S).

Proof. Let A = {u1, . . . , um}, B = {v1, . . . , vn}, and C = {w1, . . . , wp}. Then

S(uj) =

n∑
i=1

aijvi and T (vi) =

p∑
k=1

bkiwk

where MBA(S) = (aij) and MCB(T ) = (bki). Applying T to S(uj) (and using F-linearity) we get

(T ◦ S)(uj) = T (S(uj)) =

n∑
i=1

aijT (vi) =

n∑
i=1

aij

(
p∑
k=1

bkiwk

)

=

n∑
i=1

p∑
k=1

aijbkiwk =

p∑
k=1

n∑
i=1

aijbkiwk =

p∑
k=1

(
n∑
i=1

bkiaij

)
︸ ︷︷ ︸

ckj

wk.

Note that this is the rule for matrix multiplication, i.e. writing MCA(T ◦ S) = (ckj), we have
(ckj) = (bki)(aij), as required. �

Remark 3.27. Suppose that a linear map T : Fn → Fn is invertible. It follows from the above
theorem that the matrices MBA(T ) and MAB(T−1) (for any choice of bases A and B) are inverse
to each other. (Their composition is the identity operator, which has matrix In relative to any
ordered basis.) In particular, the matrix of T is invertible.

Example 3.28. We apply Proposition 3.26 to some examples.

• Let A = {(1, 1), (1,−1)}, and S and T be R-linear functions from R2 to R2 defined by
S : e1 7→ 1

2 (e1 + e2), S : e2 7→ 1
2 (−e1 + e2), T : e1 7→ 2e1, and T : e2 7→ 0. We

will find MAA(T ◦ S) by computing MAE(T ) and MEA(S). Using that S is linear, we
have S((1, 1)) = (0, 1)E and S((1,−1)) = (1, 0)E . Then T ((1, 0)) = (2, 0)E = (1, 1)A and
T ((0, 1)) = (0, 0)E = (0, 0)A. Therefore

MEA(S) =

(
0 1
1 0

)
and MAE(T ) =

(
1 0
1 0

)
which gives us that

MAA(T ◦ S) = MAE(T )MEA(S) =

(
1 0
1 0

)(
0 1
1 0

)
=

(
0 1
0 1

)
.

• Let S : R3 → R2 and T : R2 → R4 be R-linear maps where

S : e1 7→ e1 + e2 T : e1 7→ e2
e2 7→ e1 e2 7→ e3
e3 7→ e2

We find MEE(T ◦S). First, MEE(S) has 3 columns, e1 + e2, e1, and e2. Then MEE(T ) has
2 columns, e2 and e3. Putting these together we see that

MEE(T ◦ S) = MEE(T )MEE(S) =


0 0
1 0
0 1
0 0

(1 1 0
1 0 1

)
=


0 0 0
1 1 0
1 0 1
0 0 0


which means that T ◦ S sends e1 7→ e2 + e3, e2 7→ e2, and e3 7→ e3. Note that we can
compose these maps because of the correct codomain of S and domain of T , and that
these correspond to the correct dimensions of matrices for us to be able to multiply them.
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The following gives us new understanding of how MBA(T ) and MEE(T ) are related.

Lemma 3.29. Let T : Fm → Fn be an F-linear map and A and B be bases of Fm and Fn
respectively. Then

MBA(T ) = CBEMEE(T )CEA = C−1EBMEE(T )CEA.

Proof. We use Lemma 3.25 (that MBB′(id) = CBB′) and apply Proposition 3.26 twice:

MBA(T ) = MBA(T ◦ id)

= MBE(T )MEA(id)

= MBE(id ◦T )MEA(id)

= MBE(id)MEE(T )MEA(id) = CBEMEE(T )CEA.

The final statement follows from the fact that C−1BE = CEB, which is Lemma 3.12. �

A corollary to this theorem is that MB′A′(T ) = CB′BMBA(T )CAA′ = C−1BB′MBA(T )CAA′ , which
is left as an exercise. Really, this theorem is a useful tool for how we can compute MBA(T ) when
given T : Fm → Fn and the bases A, B of Fm and Fn. It states that we only need find MEE(T )
and can then use the matrices CBE and CEA of the previous section in order to find MBA(T ). This
is nicely summarised by the following diagram.

Fm Fn

Fm Fn

MBA(T )

CEA

MEE(T )

CBE

Particular attention is given to the case where m = n, which means that MBA(T ) is a square
matrix. Generally we then also impose that A = B, using the notation MA(T ) or sometimes just
MT if this is unambiguous (for example when using the standard basis in Rn). We now see the
above result in these restricted circumstances.

Corollary 3.30. Let T : Fn → Fn be an F-linear operator, and B,B′ be bases of Fn. Set M :=
MBB(T ) and M ′ := MB′B′(T ). Then

M ′ = C−1MC,

where C = CBB′ is the matrix of change of coordinates from B′ to B.

Remark 3.31. This result means that a change of coordinates relates to the matrices being
similar, which we saw in Section 2.4. Since the choice of basis does not impact on the determinant,
the trace, or the characteristic polynomial of a matrix, we can therefore define these for an abstract
linear map as the answer we obtain for any choice of basis.

This remark naturally raises whether we can find a basis B such that MBB(T ) is particularly
simple12. We now recall our ideas from Section 2 in terms of a choice of basis.

Theorem 3.32. Let T : Fn → Fn be an F-linear operator. If we can find a basis B = {v1, . . . , vn}
of eigenvectors of T , i.e., T (vi) = λivi, then

MBB(T ) = diag(λ1, . . . , λn)

where diag(λ1, . . . , λn) denotes the diagonal matrix with elements λ1, λ2, . . . , λn on the diagonal.
Furthermore, if B = {v1, . . . , vn} is basis such that MBB(T ) = diag(λ1, . . . , λn) for some numbers
λi ∈ F, then each vector vi is an eigenvector of T with corresponding eigenvalue λi. Hence a
square matrix is diagonalisable if and only if it has a basis of eigenvectors.

In the next section we look at special kinds of bases which make the computations of the
matrices in this section far simpler.

12“Particularly simple” ideally means diagonal. But we saw in general that this is not always possible, and the
full answer is given by the so-called Jordan normal form, which we leave to Linear Algebra 2.
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4. Inner products

This section only relates to Rn and Cn. Recall the dot product and norm

x · y =

n∑
i=1

xiyi , ‖x‖ =
√
x · x =

( n∑
i=1

x2i

) 1
2

,

which allowed to measure length of vectors and angles between them, and in particular gave us
the notion of orthogonality. Our aim is to generalise the notion of a dot product. We do this with
an inner product. The key motivation for it comes from beyond this course, in particular quantum
mechanics. Note that this is intrinsically complex, rather than real.

First, we extend the notion of dot product and norm to Cn. In this case the answers will be
in C. In order to give rise to a norm, we want that the inner product of a vector with itself to
output a positive real number. For this reason, let us consider

x̄ · y :=

n∑
i=1

x̄iyi

where x̄ denotes complex conjugation. All the generalisations of the dot product share some key
features which we take now to define the general notion of an inner product.

Definition 4.1. For a vector space V over C (think: Cn), an inner product on V is a map
〈 , 〉 : V × V → C which has the following properties for all u, v, w ∈ V and λ ∈ C:

(i) 〈v, v〉 ∈ R>0 and 〈v, v〉 = 0 if and only if v = 0;
(ii) 〈v, u+ w〉 = 〈v, u〉+ 〈v, w〉 and 〈v, λw〉 = λ〈v, w〉;
(iii) 〈v, w〉 = 〈w, v〉.

We will see that 〈λv,w〉 6= λ〈v, w〉 for λ ∈ C \R, and instead get 〈λv,w〉 = λ̄〈v, w〉. Informally,
we can “pull out” the scalar λ from the second position in 〈, 〉 but not the first13. The reasoning
for this is to ensure that 〈v, v〉 =: ‖v‖2 is in R. In the case that V is a vector space over R we
have the same definition, but condition (iii) can be more simply written as 〈v, w〉 = 〈w, v〉.

Definition 4.2. For a vector space V over R (think: Rn), an inner product on V is a map
〈 , 〉 : V × V → R which has the following properties for all u, v, w ∈ V and λ ∈ R:

(i) 〈v, v〉 ≥ 0 and 〈v, v〉 = 0 if and only if v = 0;
(ii) 〈v, u+ w〉 = 〈v, u〉+ 〈v, w〉 and 〈v, λw〉 = λ〈v, w〉;
(iii) 〈v, w〉 = 〈w, v〉.

Example 4.3. We see two inner products, which will be our main examples for now.

(i) For V = Cn we have the (standard) inner product given by

〈x, y〉 :=

n∑
i=1

x̄iyi = x̄ · y.

(ii) Let A ∈Mn(R) be a matrix which is symmetric (At = A) and positive definite (x ·Ax > 0
for all x ∈ Rn\{0}). Then we obtain an inner product on V = Rn from

〈x, y〉A := x ·Ay =

n∑
i=1

xi

n∑
j=1

aijyj .

Definition 4.4. A vector space V with an inner product 〈 , 〉 defined on it is called an inner
product space (V, 〈, 〉). If we wish to further specify the field as C or R, then we say V is a
complex inner product space or a real inner product space respectively.

Remark 4.5. For many of our proofs we will imagine that V is a complex inner product space,
since this is a greater restriction on V . Our proofs therefore hold for any inner product space.

13This is a matter of convention: some authors insist that the inner product is linear in the first variable rather
than the second.
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Let us note now a few simple consequences of our definition.

Lemma 4.6. Let (V, 〈, 〉) be an inner product space over C. Then

〈u+ w, v〉 = 〈u, v〉+ 〈w, v〉 and 〈λw, v〉 = λ̄〈w, v〉
for all u, v, w ∈ V and λ ∈ C.

Proof. This follows from combining (ii) and (iii) in the definition of 〈, 〉. Let us show the second

assertion: 〈λw, v〉 = 〈v, λw〉 = λ〈v, w〉 = λ̄〈v, w〉 = λ̄〈w, v〉. The other is similar. �

If (V, 〈, 〉) is a real inner product space then we have instead 〈λv,w〉 = λ〈v, w〉. Also, the above
properties can be extended to linear combinations of vectors. We have

〈
k∑
i=1

λivi, w〉 =

k∑
i=1

λ̄i〈vi, w〉 and 〈v,
k∑
i=1

λiwi〉 =

k∑
i=1

λi〈v, wi〉.

Having an inner product enables us to define a norm.

Definition 4.7. Let (V, 〈, 〉) be an inner product space. Then we define an associated norm by

‖v‖ :=
√
〈v, v〉.

Example 4.8 (Example 4.3 continued). We find the norm for our examples of inner products.

(i) ‖x‖ =

(∑n
i=1|xi|2

) 1
2

(ii) ‖x‖A =

(∑n
i,j=1 aijxixj

) 1
2

We used the dot product previously to define as well the angle between vectors. But on a
complex vector space the inner product gives usually a complex number, so we can’t easily define
an angle. The notion of orthogonality, however, can be extended directly.

Definition 4.9. Let (V, 〈, 〉) be an inner product space, then

(i) v, w ∈ V are orthogonal, denoted v ⊥ w, if 〈v, w〉 = 0;
(ii) two subspaces U,W ⊂ V are called orthogonal, denoted U ⊥ W , if u ⊥ w for all u ∈ U

and w ∈W .

Example 4.10. We work with C2 with the standard inner product 〈x, y〉 = x̄ · y.

i) For v1 = (i, 1) and v2 = (1, i), we have v1 ⊥ v2.
ii) With v1 and v2 as above, U = span{v1} and W = span{v2} are orthogonal.

The following is probably most natural when the subset is a subspace.

Definition 4.11. Let V be an inner product space and S a subset of V . Then the orthogonal
complement of S, denoted S⊥, is

S⊥ := {v ∈ V, v ⊥ s for all s ∈ S}.

Example 4.12. We look at some examples of orthogonal complements.

i) For W = span{(i, 1)}, we have W⊥ = span{(1, i)}.
ii) For Rn and k < n, if W = span{e1, . . . , ek} then W⊥ = span{ek+1, . . . , en}.
iii) For Rn and k < n, if S = {e1, . . . , ek} then S⊥ = span{ek+1, . . . , en}.

The following lemma is helpful in determining orthogonal complements.

Lemma 4.13. Let V be an inner product space and S a subset. Then S⊥ is a subspace of V .

Proof. We use the subspace test. We first note that 0 ∈ S⊥. Secondly, that for v1, v2 ∈ S⊥ and
any s ∈ S we have 〈v1 + v2, s〉 = 〈v1, s〉 + 〈v2, s〉 = 0 + 0. Finally, that for λ ∈ C, v ∈ V , and
s ∈ S, that 〈λv, s〉 = λ̄〈v, s〉 = λ̄0 = 0. �

We have as well a Pythagoras theorem for orthogonal vectors.
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Theorem 4.14. Let V be an inner product space and v, w ∈ V . If v ⊥ w, then

‖v + w‖2 = ‖v‖2 + ‖w‖2.

Proof. We have ‖v + w‖2 = 〈v + w, v + w〉 = 〈v, v〉 + 〈w,w〉 + 〈v, w〉 + 〈w, v〉 which is then

‖v‖2 + ‖w‖2 + 〈v, w〉+ 〈v, w〉. Our assumption that v ⊥ w gives us ‖v + w‖2 = ‖v‖2 + ‖w‖2. �

Note in the above proof that 〈v, w〉+ 〈v, w〉 = 0 would imply that ‖v+w‖2 = ‖v‖2 + ‖w‖2. For
a complex inner product we could have that 〈v, w〉 = iy for some y ∈ R\{0} and so our statement

is not an if and only if. For a real inner product we get that 〈v, w〉+ 〈v, w〉 = 2〈v, w〉 and so the
only way for this to be zero is if 〈v, w〉 = 0, i.e., v ⊥ w (making the statement an if and only if).

One of the advantages of having an inner product on a vector space is that we can introduce
the notion of an orthonormal basis.

Definition 4.15. Let (V, 〈, 〉) be an inner product space. Then a basis B = {v1, v2, . . . , vn} is
called an orthonormal basis (often abbreviated as ONB) if

〈vi, vj〉 = δij :=

{
1 i = j

0 i 6= j
.

Example 4.16. We give some examples of orthonormal bases.

i) For V = Cn with the standard inner product, E = {e1, e2, . . . , en} is an ONB.
ii) For (i) with n = 2, the vectors v1 = 1√

2
(i, 1) and v1 = 1√

2
(1, i) form an ONB.

iii) On V = Rn with 〈, 〉A, where A = diag(α1, . . . , αn) the set B = {v1, . . . , vn} with vi =
(αi)

−1/2ei, i = 1, 2, . . . , n is an ONB.

Working with the standard basis has had many advantages. For one, given x ∈ Rn, we had
x = (x · e1)e1 + (x · e2)e2 + . . .+ (x · en)en. This actually follows from E being an ONB.

Proposition 4.17. Let (V, 〈, 〉) be an inner product space and B = {v1, v2, . . . , vn} an orthonormal
basis. Then for any v, w ∈ V we have each of the following.

i) v =
∑n
i=1〈vi, v〉vi

ii) 〈v, w〉 =
∑n
i=1 〈vi, v〉〈vi, w〉

iii) ‖v‖ =

(∑n
i=1|〈vi, v〉|2

) 1
2

Proof. Since B is a basis, there are λ1, λ2, . . . , λn ∈ C such that v =
∑n
j=1 λjvj . Then

〈vi, v〉 = 〈vi,
n∑
j=1

λjvj〉 =

n∑
j=1

λj〈vi, vj〉 =

n∑
j=1

λjδij = λi

from which (i) follows. For (ii), we use that v =
∑n
k=1〈vk, v〉vk and get

〈v, w〉 = 〈
n∑
k=1

〈vk, v〉vk, w〉 =

n∑
k=1

〈〈vk, v〉vk, w〉 =

n∑
k=1

〈vk, v〉〈vk, w〉.

Finally, (iii) follows from (ii) by setting v = w. �

Remark 4.18. The result (ii) above gives us a way to compute the coefficients for a linear
combination in an ONB B = {v1, . . . , vn}. That is, given v ∈ V , we have v = x1v1 + . . . + xnvn
where xi = 〈vi, v〉 for i = 1, . . . , n. Moreover, in these coordinates, the inner product becomes the
standard inner product on Cn. That is, for (a)E = (x)B and (b)E = (y)B, we have

〈a, b〉 =

n∑
i=1

x̄iyi = x̄ · y.

At this point, we may wonder whether we can always find an ONB.
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Theorem 4.19. Let V be an inner product space with basis A = {u1, . . . , un}. Then there exists
an ONB for V .

Proof. We will turn the basis A = {u1, . . . , un} of V into an orthonormal one in the following way
(generally known as the Gram–Schmidt process). We set

v1 :=
1

‖u1‖
u1

v2 :=
1

‖u2 − 〈v1, u2〉v1‖
(u2 − 〈v1, u2〉v1)

v3 :=
1

‖u3 − 〈v2, u3〉v2 − 〈v1, u3〉v1‖
(u3 − 〈v2, u3〉v2 − 〈v1, u3〉v1)

...

vn :=
1

‖un − 〈vn−1, un〉vn−1 − . . .− 〈v1, un〉v1‖
(un − 〈vn−1, un〉vn−1 − . . .− 〈v1, un〉v1)

and this defines a set of n orthonormal vectors, hence an orthonormal basis. �

An advantage of having an inner product on a space V is that, for any subspace U ⊂ V , we
can find a unique complementary subspace consisting of all orthogonal vectors.

Proposition 4.20. Let V be an inner product space and U a finite dimensional subspace. Then

V = U ⊕ U⊥.

Proof. The previous theorem says that there is an ONB {v1, . . . , vk} for U . We begin by showing
that V = U + U⊥. Let v ∈ V . Set

u := 〈v1, v〉v1 + 〈v2, v〉v2 + . . .+ 〈vk, v〉vk
which is an element of U since 〈vj , v〉 ∈ C for j = 1, . . . , k. Now let

w := v − 〈v1, v〉v1 − 〈v2, v〉v2 − . . .− 〈vk, v〉vk
which is actually in U⊥. To see this we note, for any j = 1, . . . , k, that 〈vj , w〉 = 〈vj , v〉 − 〈vj , v〉.
Thus v = u + w where u ∈ U and w ∈ U⊥. Finally we show this is a direct sum. Consider if
v ∈ U ∩ U⊥. But then 〈v, v〉 = 0, and so v = 0. �

We can check that the above Theorem does indeed hold for the spaces in Example 4.12.

Proposition 4.21. Let V be an inner product space and U a finite dimensional subspace. Then

(U⊥)⊥ = U.

Proof. Note that 〈u, v〉 = 0 if and only if 〈v, u〉 = 0. We show that U ⊆ (U⊥)⊥ and (U⊥)⊥ ⊆ U .

• Take u ∈ U . Then 〈w, u〉 = 0 for every w ∈ U⊥. But then 〈u,w〉 = 0 and so u ∈ (U⊥)⊥.
• Take v ∈ (U⊥)⊥. Then, by Proposition 4.20, v = u+ w where u ∈ U and w ∈ U⊥. Thus
v−u = w ∈ U⊥. But also v, u ∈ (U⊥)⊥, and so v−u ∈ (U⊥)⊥. Thus v−u ∈ U⊥∩(U⊥)⊥,
and so 〈v − u, v − u〉 = 0. Hence v − u = 0, and v = u, i.e. v ∈ U . �

We have two applications of Remark 4.18 that simplify the computations of Section 3.

Example 4.22. We will express a general vector as a linear combination in an ONB.

i) For C2 we know that v1 = 1√
2
(i, 1) and v1 = 1√

2
(1, i) form an ONB. To expand an

arbitrary vector v = (z1, z2) in {v1, v2}, we can simply compute 〈v1, v〉 = −iz1+z2√
2

and

〈v2, v〉 = z1−iz2√
2

to obtain that

v =
−iz1 + z2√

2
v1 +

z1 − iz2√
2

v2

which allows us to avoid solving a system of two linear equations. Note also that this
allows us to easily compute CBA for any basis A of C2.
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ii) One can check that

v1 =
1√
6

1
1
2

 , v2 =
1√
5

−2
0
1

 , v3 =
1√
30

 1
−5
2


is an ONB for R3 by computing 〈vi, vj〉 for i, j = 1, 2, 3. To expand a vector v = (x, y, z)
in this basis, we would have previously had to solve a system of three equations for three
unknowns. Instead, compute 〈v1, v〉 = x+y+2z√

6
, 〈v2, v〉 = −2x+z√

5
and 〈v3, v〉 = x−5y+2z√

30
to

immediately obtain that

v =
x+ y + 2z√

6
v1 +

−2x+ z√
5

v2 +
x− 5y + 2z√

30
v3.

iii) For V = Cn with 〈x, y〉 = x̄ ·y and the standard basis E , we have for x = (x1, . . . , xn) that
〈ei, x〉 = xi. Hence the expansion formula just gives (as we would expect)

x = x1e1 + x2e2 + . . .+ xnen.

The above examples may also remind us of how we defined a matrix to represent a linear
transformation T . The entries of the matrix were given by aij = ei · T (ej). A similar approach
can be taken whenever we have an ONB.

Proposition 4.23. Let (V, 〈, 〉) be an inner product space and B = {v1 . . . , vn} an orthonormal
basis. Given a linear operator T : V → V , we have that

MBB(T ) = (〈vi, T vj〉).

Proof. The entries of MBB(T ) are defined by the equation Tvj =
∑
k akjvk for j = 1, . . . , n. Let

i ∈ {1, . . . , n}. Then we have 〈vi, T vj〉 = 〈vi,
∑
k akjvk〉 = aij because B is an ONB. �

This result is an immensely practical one: rather than solving a system of n linear systems of
equations to define, one by one, the columns of a matrix representing T , we merely need calculate
n2 inner products.

Example 4.24 (Example 4.22(ii) continued). Recall that we found an ONB

v1 =
1√
6

1
1
2

 , v2 =
1√
5

−2
0
1

 , v3 =
1√
30

 1
−5
2

 .

Let T : R3 → R3 be a linear map defined by MEE(T ) :=

1 3 0
0 1 0
0 2 −1

. We will find MBB(T ).

We begin by finding that

T (v1) =
1√
6

4
1
0

 T (v2) =
1√
5

−2
0
−1

 , T (v3) =
1√
30

−14
−5
−12

 .

We can then obtain the matrix elements aij = vi · T (vj) as

(4.1) MBB(T ) =


5
6

−4√
30

−43
6
√
5

−8√
30

3
5

16
5
√
6

−1
6
√
5

−4
5
√
6

−13
30

 .

Thus, by computing 9 inner products, we have found MBB(T ). This is far less work than solving
the relevant simultaneous linear equations.
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5. The adjoint and important classes of matrices

In this section we restrict ourselves to complex inner product spaces of finite dimension. We
do this as then any linear operator has at least one eigenvalue, since any polynomial has at least
one root over C.

Definition 5.1. Let (V, 〈, 〉) be an inner product space and T : V → V a linear operator. Then
the adjoint operator T ∗ : V → V is defined by the relation

〈T ∗v, w〉 = 〈v, Tw〉 for all v, w ∈ V.

Example 5.2. We start simply. Let λ ∈ C and T (v) := λv for all v ∈ V . We have T ∗ = λ̄I, since

〈v, Tw〉 = 〈v, λw〉 = λ〈v, w〉 = 〈λ̄v, w〉.

Upon first seeing this definition, we may be concerned whether in general T ∗ exists and if it is
unique. One can develop some general arguments answering both questions affirmatively, but the
best way to get some understanding of the adjoint is to look at matrices.

Lemma 5.3. Let V be an inner product space and T : V → V be a linear operator. If B is an
orthonormal basis and T has the matrix MBB(T ) = (aij) in that basis, then

MBB(T ∗) = (āji).

Proof. By definition, the entries of MBB(T ) are given by aij = 〈vi, T vj〉. To find the entries bij of

MBB(T ∗) we note that bij = 〈vi, T ∗vj〉 = 〈T ∗vj , vi〉 = 〈vj , T vi〉 which equals āji. �

Thus we can obtain MBB(T ∗) from MBB(T ) by taking the complex conjugate of the entries and
then take the transpose. It is worthwhile to give this operation on matrices an extra definition.

Definition 5.4. Let A = (aij) ∈ Mn,m(C) be an m × n matrix with complex elements, then the
matrix A∗ = (āji) ∈Mm,n(C) is called the adjoint matrix.

Example 5.5. Let us find the adjoint of particular matrices. Let

A =

(
2− i 1 + 3i
−i 2

)
B =

(
0 −i
i 0

)
C =

1√
2

(
i 1
1 i

)
D =

 3 2− i e2i

0 i 3
11i− 1 12 π

 .

Then

A∗ =

(
2 + i i
1− 3i 2

)
B∗ =

(
0 −i
i 0

)
C∗ =

1√
2

(
−i 1
1 −i

)
D∗ =

 3 0 −11i− 1
2 + i −i 12
e−2i 3 π

 .

Notice that B∗ = B, and by direct computation we have that C∗C = I.

The following lemma will be helpful for understanding properties of the adjoint.

Lemma 5.6. Let V be an inner product space, and T and T ′ be linear maps. If 〈v, Tw〉 = 〈v, T ′w〉
for all v, w ∈ V , then T = T ′.

Proof. One approach is to fix an ONB B = {v1, . . . , vn} of V and note that MBB(T ) = MBB(T ′)
since 〈vi, T (vj)〉 = 〈vi, T ′(vj)〉 for all i, j ∈ {1, . . . , n}. Another approach, where we do not choose
a finite basis, is to note that

〈v, Tw〉 = 〈v, T ′w〉 ⇔ 〈v, Tw〉 − 〈v, T ′w〉 = 0⇔ 〈v, Tw − T ′w〉 = 0

and so if Tw − T ′w = 0 for all w ∈ V then we are done (since then Tw = T ′w for all w ∈ V ).
Now, imagine that there is a x ∈ V such that Tx − T ′x = u 6= 0. But then choose v := u in the
above computation. This provides a contradiction since

〈u, Tx− T ′x〉 = 〈u, u〉 = 0

only occurs when u = 0 (from our definition of an inner product). �

Similarly if 〈Tv,w〉 = 〈T ′v, w〉 for all v, w ∈ V , then T = T ′. We are now ready to observe a
few consequences of the definition of the adjoint.
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Lemma 5.7. Let V be an inner product space and S, T : V → V be linear operators. Then

i) (T ∗)∗ = T .
ii) (S + T )∗ = S∗ + T ∗.
iii) (TS)∗ = S∗T ∗.
iv) if T is invertible, then (T−1)∗ = (T ∗)−1.

Proof. We lean heavily on the previous lemma, and deal with each statement in turn.

i) We have 〈v, Tw〉 = 〈T ∗v, w〉 = 〈w, T ∗v〉 = 〈(T ∗)∗w, v〉 = 〈v, (T ∗)∗w〉.
ii) Here 〈(S + T )∗v, w〉 = 〈v, (S + T )w〉 = 〈v, Sw + Tw〉 = 〈v, Sw〉+ 〈v, Tw〉 and then

〈v, Sw〉+ 〈v, Tw〉 = 〈S∗v, w〉+ 〈T ∗v, w〉 = 〈S∗v + T ∗v, w〉 = 〈(S∗ + T ∗)v, w〉.
iii) Now 〈(TS)∗v, w〉 = 〈v, T (S(w))〉 = 〈T ∗v, Sw〉 = 〈S∗(T ∗(v)), w〉 = 〈S∗T ∗v, w〉.
iv) We note that 〈(T−1)∗T ∗v, w〉 = 〈T ∗v, T−1w〉 = 〈v, T (T−1(w))〉 = 〈v, w〉 and so (T−1)∗T ∗

is the identity, as required. �

Definition 5.8. Let V be an inner product space and T : V → V a linear operator. Then we say

i) T is hermitian, or self-adjoint, if T ∗ = T .
ii) T is unitary if T ∗T = I and TT ∗ = I.
iii) T is normal if T ∗T = TT ∗.

Example 5.9 (Example 5.5 continued). The same definitions hold for matrices in general.

• The matrix B is hermitian.
• The matrix C, from our computation, is unitary.

To see how some of these properties interact, it is worthwhile proving each of the following.

Lemma 5.10. If T is hermitian, then T is normal.

Lemma 5.11. If T is unitary, then T is normal.

Example 5.12. We find an example of a matrix which is not normal (and so is also not hermitian
or unitary). Let

A =

(
1 1
0 1

)
so that A∗ =

(
1 0
1 1

)
.

from which we see, by direct computation, that AA∗ 6= A∗A.

We will return now to the study of eigenvalues and eigenvectors and look at consequences of
the above definitions for them. We start with hermitian operators.

Lemma 5.13. Let (V, 〈, 〉) be an inner product space and T : V → V a hermitian linear operator.
Then all of the eigenvalues of T are real valued.

Proof. Let λ ∈ C be an eigenvalue of T , and let v ∈ Vλ be an eigenvector with ‖v‖ = 1. Then
λ = 〈v, Tv〉 because

〈v, Tv〉 = 〈v, λv〉 = λ〈v, v〉 = λ.

Now, using T = T ∗, we see that λ = 〈v, Tv〉 = 〈T ∗v, v〉 = 〈Tv, v〉 = 〈λv, v〉 = λ̄〈v, v〉 = λ̄. �

We can also say something about the eigenvectors of a hermitian operator.

Proposition 5.14. Let (V, 〈, 〉) be an inner product space and T : V → V a hermitian linear
operator. Then eigenvectors with different eigenvalues are orthogonal, i.e., if λ1 6= λ2, then

E(λ1) ⊥ E(λ2).

Proof. Let v1 ∈ E(λ1) and v2 ∈ E(λ2), i.e,, Tv1 = λ1v1 and Tv2 = λ2v2. We consider 〈v1, T v2〉.
On the one hand, we have

〈v1, T v2〉 = 〈v1, λ2v2〉 = λ2〈v1, v2〉.
On the other hand, since T ∗ = T , we have

〈v1, T v2〉 = 〈Tv1, v2〉 = 〈λ1v1, v2〉 = λ̄1〈v1, v2〉.
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But Lemma 5.13 states that λ̄1 = λ1. So λ2〈v1, v2〉 = λ1〈v1, v2〉 or

(λ1 − λ2)〈v1, v2〉 = 0,

and if λ1 6= λ2 we must conclude that 〈v1, v2〉 = 0. �

Note that the above shows, for hermitian matrices, a stronger property for the eigenvectors
than the one we saw in Section 2 (that in general we only have that eigenvectors for different
eigenvalues are linearly independent). We will soon show that this stronger property applies to
all normal operators, and so also all unitary ones.

Example 5.15 (Example 5.5 continued). We return to our matrix B, which was hermitian. This
was also the matrix of Example 2.11, where we found the eigenvalues 1 and −1 and corresponding
eigenvectors v1 = (1, i) and v2 = (i, 1). Hence E(1) ⊥ E(−1), as expected.

Example 5.16. We will see some examples and properties of orthogonal projections. These
are projections (meaning P 2 = P ) that are also hermitian.

(a) Let V = C2 with the standard inner product. Then P1 and P2 are orthogonal projections.

P1 =

(
1 0
0 0

)
, P2 =

1

2

(
1 1
1 1

)
(b) Let w0 ∈ V be a vector with ‖w0‖ = 1. Then

P (v) := 〈w0, v〉w0

is an orthogonal projection. Both previous examples are special cases of this construction:
if we choose w0 = (1, 0) then we get P1, and if we choose w0 = 1√

2
(1, 1) then we get P2.

We now investigate eigenvalues and eigenvectors for orthogonal projections. Given Pv = λv, then
by P 2 = P we obtain λ2v = λv which gives (λ2 − λ)v = 0. Hence

λ2 = λ.

Therefore P can have as eigenvalues only 1 or 0. For the eigenspaces E(0) and E(1), we can also
make progress. If v ∈ E(0), then Pv = 0 and so E(0) = kerP . If v ∈ E(1), then v = Pv and
this means v ∈ ImP . On the other hand, if v ∈ ImP then v = Pv since v = Pw for some w ∈ V
and then Pv = P 2w = Pw = v. Hence E(1) = ImP . We can apply the Rank Nullity Theorem to
obtain that

V = E(0)⊕ E(1).

We now turn our attention to unitary operators.

Lemma 5.17. Let V be an inner product space and S, T : V → V unitary operators. Then S−1,
ST , and S∗ are all unitary.

Proof. We use properties of the adjoint found in Lemma 5.7.

• From SS∗ = I, we have S∗ = S−1 ⇒ I = (S∗)−1S−1 ⇒ I = (S−1)∗S−1.
• Using S∗∗ = S, we see S∗ then satisfies S∗(S∗)∗ = I.
• We compute that ST (ST )∗ = STT ∗S∗ = SS∗ = I. �

Lemma 5.18. Let V be an inner product space and T be unitary. Then ‖Tv‖ = ‖v‖ for any
v ∈ V and if λ is an eigenvalue of T , then |λ| = 1.

Proof. We first note that ‖Tv‖ = 〈Tv, Tv〉 12 = 〈T ∗Tv, v〉 12 = 〈v, v〉 12 = ‖v‖. Now, given an
eigenvector w ∈ V with corresponding eigenvalue λ, we see that ‖w‖ = ‖Tw‖ = ‖λw‖ = |λ|‖w‖
and since w 6= 0, we must have that |λ| = 1. �

Remark 5.19. Combining Lemma 5.13 and Lemma 5.18 mean a matrix that is both unitary and
hermitian can only have eigenvalues from {1,−1}.

Lemma 5.20. Let A ∈Mn(C) be unitary, with A = (c1 · · · cn). Then {c1, . . . , cn} form an ONB
for Cn, with respect to the standard inner product.
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Proof. Since A is unitary, we have that A∗A = I, where I denotes the identity matrix. Then the
ith row of A∗ is given by c̄1, and the matrix equation states that c̄i · cj = δij , i.e., that {c1, . . . , cn}
is an ONB for Cn. �

Finally we move onto the most general case, of normal operators.

Lemma 5.21. Let S be a normal operator and λ an eigenvalue of S. Then S′ := S − λI is also
normal.

Proof. We start with just S and T as normal operators, and compute that

(S + T )(S + T )∗v = (S + T )[S∗v + T ∗v]

= SS∗v + ST ∗v + TS∗v + TT ∗v

= (SS∗ + ST ∗ + TS∗ + TT ∗)v and

(S + T )∗(S + T )v = (S∗S + S∗T + T ∗S + T ∗T )v.

If we set T := −λI, we note that T ∗ = −λ̄I. But then S∗T = TS∗ and T ∗S = ST ∗. Hence
(S + T )(S + T )∗ = (S + T )∗(S + T ) in this case. �

Proposition 5.22. Let (V, 〈, 〉) be an inner product space and T : V → V be a normal operator.
If v is an eigenvector of T with eigenvalue λ, then v is an eigenvector of T ∗ with eigenvalue λ̄.

Proof. Our aim is to show that T ∗v = λ̄v for our eigenvector v corresponding to our eigenvalue λ.
From Lemma 5.21 we know that

S := T − λI
is normal. Using SS∗ = S∗S we find for an arbitrary v ∈ V

‖Sv‖2 = 〈Sv, Sv〉 = 〈v, S∗Sv〉 = 〈v, SS∗v〉 = 〈S∗v, S∗v〉 = ‖S∗v‖2

and now if v is an eigenvector of T with eigenvalue λ, then ‖Sv‖ = 0 and so ‖S∗v‖ = 0 which
means S∗v = 0. But since S∗ = T ∗ − λ̄I this implies T ∗v = λ̄v. �

Let us show that Proposition 5.14 also applies to normal operators.

Proposition 5.23. Let (V, 〈, 〉) be an inner product space and T : V → V a normal operator. If
λ1, λ2 are eigenvalues of T with λ1 6= λ2, then we have

E(λ1) ⊥ E(λ2).

Proof. The proof is almost identical to the one for the hermitian case above, but now we use
T ∗v1 = λ̄1v1. We consider 〈v1, T v2〉, with v1 ∈ E(λ1) and v2 ∈ E(λ2). On the one hand,

〈v1, T v2〉 = 〈v1, λ2v2〉 = λ2〈v1, v2〉.
On the other hand,

〈v1, T v2〉 = 〈T ∗v1, v2〉 = 〈λ̄1v1, v2〉 = λ1〈v1, v2〉.
Thus (λ1 − λ2)〈v1, v2〉 = 0, and so 〈v1, v2〉 = 0. �

We come now to the central result about normal operators, which will imply that they can be
diagonalised. The proof below is a generalisation of the standard proof for hermitian operators,
which we leave as a challenge to produce as a particular case of the following.

Theorem 5.24. Let (V, 〈, 〉) be a finite dimensional complex inner product space and T : V → V
a normal operator with specT = {λ1, . . . , λk}. Then

V = E(λ1)⊕ E(λ2)⊕ · · · ⊕ E(λk).

Proof. We set U = E(λ1)+E(λ2)+. . .+E(λk), and note that these are direct sums by Proposition
2.23. We now wish to show that V = U , i.e., that V can be completely decomposed into eigenspaces
of T (so that there is nothing left). Since V = U ⊕ U⊥ by Proposition 4.20, we will do this by
showing that U⊥ = {0}.

Since eigenvectors of T are eigenvectors of T ∗, too, we know that U is invariant under T ∗, i.e.,
T ∗(U) ⊂ U . But then U⊥ is also invariant under T . To see this, consider u ∈ U and w ∈ U⊥.
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Then 〈Tw, u〉 = 〈w, T ∗u〉 = 0, because T ∗u ∈ U , and since this is true for any u ∈ U and w ∈ U⊥
we get T (U⊥) ⊂ U⊥.

So if U⊥ 6= {0}, then the operator T : U⊥ → U⊥ must have at least one eigenvalue14. But then
we have an eigenspace of T in U⊥, when by assumption all the eigenspaces are in U . This is a
contradiction, and hence U⊥ = {0}. �

We obtain the following as an immediate consequence of the previous two results.

Corollary 5.25. Let (V, 〈, 〉) be a finite dimensional complex inner product space and T : V → V
a normal operator. Then V has an orthonormal basis of eigenvectors of T .

Proof. From the previous theorem we can write V as a direct sum of spaces E(λi) where i =
1, . . . , k. For each such space we choose an orthonormal basis. Now, since E(λi) ⊥ E(λj) if i 6= j,
the union of all these bases is an orthonormal basis of V consisting of eigenvectors of T . �

We have therefore determined a criteria for a linear operator to have of a basis of eigenvectors.
Any normal operator, or in particular any hermitian and any unitary operator, has a basis of
eigenvectors, and hence is diagonalisable. We can actually say a little more for matrices.

Theorem 5.26. Let A ∈ Mn(C) be a normal matrix. Then there exists a matrix U ∈ Mn(C)
such that

U−1AU = diag(λ1, λ2, . . . , λn),

where λ1, λ2, . . . , λn are the eigenvalues of A, counted with multiplicity. Furthermore, we can
choose U to be a unitary matrix (so that U−1 = U∗) where its columns form an orthonormal basis
consisting of eigenvectors of A.

The advantages from this result are that we know that the given matrix A is diagonalisable
and we only need to find U∗ rather than U−1.

Example 5.27 (Example 5.5 continued). We return to our hermitian matrix

B =

(
0 −i
i 0

)
.

We already discussed in Example 2.11 that B has eigenvalues λ1 = 1 and λ2 = −1 with corre-
sponding eigenvectors v1 = (1, i) and v2 = (i, 1). If we now choose the normalised eigenvectors
ṽ1 = 1√

2
(1, i) and ṽ2 = 1√

2
(i, 1) for the columns of U , then the corresponding matrix

U =
1√
2

(
1 i
i 1

)
is unitary and diagonalises A:

U∗AU =

(
1 0
0 −1

)
.

Note that the actual process of finding eigenvalues and eigenvectors for hermitian, unitary or in
general normal matrices is identical to the examples discussed in Section 2. The only difference is
that the eigenvectors are orthogonal, and if we choose normalised eigenvectors, then the change of
basis matrix U we obtain, is unitary. The additional theory we developed does not really help us
with the computational aspect, but it tells us in advance if it is worth starting the computation.

5.1. Real matrices. We have some new vocabulary for real matrices.

Definition 5.28. Let A ∈Mn(R).

• If A is hermitian, then we call it symmetric. In particular, we have A = At.
• If A is unitary, then we call it orthogonal. In particular, we have At = A−1.

14Here we are using that our space is complex, so that the characteristic polynomial has at least one root in C.
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We have focused on complex matrices so far, because if we work over C then we always have n
eigenvalues, including multiplicity. But many applications involve only real valued quantities and
so we should like to work with real matrices. We now want to give one result about diagonalisation
in that context. We look at hermitian matrices since we have seen these have only real eigenvalues.

Theorem 5.29. Let A ∈Mn(R) be symmetric. Then there exists a matrix O ∈Mn(R) such that

O−1AO = diag(λ1, . . . , λn),

where λ1, . . . , λn ∈ R are the eigenvalues of A. Furthermore, we can choose O to be an orthogonal
matrix where its columns form an orthonormal basis consisting of eigenvectors of A.

Proof. A real symmetric n× n matrix A has n real eigenvalues λ1, λ2, . . . , λn, counted with mul-
tiplicity. The corresponding eigenvectors are solutions to

(A− λiI)vi = 0

but since this is a system of linear equations with real coefficients, the number of linearly indepen-
dent solutions over R is the same as over C. Thus we can choose dimE(λi) orthogonal eigenvectors
with real components, and can find a orthonormal basis of real eigenvectors v1, . . . vn ∈ Rn of A.
Hence the matrix O = [v1 . . . vn] will diagonalise A. �

Lemma 5.30. Let O ∈Mn(R) be an orthogonal matrix. Then the column vectors v1, . . . , vn of O
satisfy vi · vj = δij, i.e., they form an orthonormal basis.

Lemma 5.31. If O1, O2 are orthogonal matrices, then O1O2 and O−11 = Ot1 are orthogonal, too.

In other words, orthogonal matrices of a given size form a group with respect to matrix multi-
plication. We leave the proof as an exercise.

Example 5.32. We work with

A =

(
0 1
1 0

)
.

This matrix has eigenvalues λ1 = 1 and λ2 = −1 and normalised eigenvectors v1 = 1√
2
(1, 1) and

v2 = 1√
2
(1,−1). We therefore have that

O =
1√
2

(
1 1
1 −1

)
and OtAO =

(
1 0
0 −1

)
.

An application of this result is the classification of quadratic forms. A function g : Rn → R is
called a quadratic form if

g(x) =
1

2
x ·Qx

where Q ∈Mn(R) is a symmetric matrix. We want to find a simple representation of this function
which allows us for instance to determine if x = 0 is a maximum or a minimum of g(x), or neither of
the two. By Theorem 5.29 there exist an orthogonal matrix O such that OtQO = diag(λ1, . . . , λn),
where λ1, . . . , λn are the eigenvalues of the operator Q : Rn → Rn. So if we introduce new
coordinates y by y = Otx, or x = Oy, then

G(y) := g(Oy) =
1

2
y ·OtQOy =

1

2
(λ1y

2
1 + λ2y

2
2 + . . .+ λny

2
n).

Hence the behaviour of the quadratic form is completely determined by the eigenvalues15.

This is used for instance in the study of critical points of functions of several variables in
multivariable calculus, because the so-called Hessian matrix composed of second partial derivatives
of a sufficiently differentiable function of several variables is symmetric, hence diagonalisable.

15x = 0 is: a minimum if all positive, a maximum if all negative, and a generalised saddle point otherwise.
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6. Vector spaces and subspaces

We now see the notion of a vector space, which generalises the spaces Rn and Cn that we have
worked with so far. This constitutes the foundation for Linear Algebra within more advanced
areas of modern mathematics. Our abstract exposition has this in mind.

6.1. Some abstract algebra. Mathematics is often a discipline of abstraction. This is a powerful
tool in the mathematician’s arsenal, since it allows us to prove results with one example in mind
(Rn, for instance) whilst actually proving results about a much more general class of examples
(vector spaces, in our case). For linear algebra, we first need the notion of a field of numbers,
often denoted by F. Before defining a field, let us define what a group is. Groups arose in the
study of transformations and symmetry and constitute the vast subject of group theory.

Definition 6.1. A group (G, ∗) consists of a nonempty set G and the binary operation ∗, called
group multiplication, which assigns to each ordered pair (g, h) ∈ G × G an element g ∗ h ∈ G.
Furthermore, the following properties must hold.

• Closedness under group operation: if f, g ∈ G, then f ∗ g ∈ G.
• Associativity: if f, g, h ∈ G, then (f ∗ g) ∗ h = f ∗ (g ∗ h).
• Existence of a unique identity element, e ∈ G: if g ∈ G, then e ∗ g = g ∗ e = g.
• Existence of an inverse: for each g ∈ G, there exists an h ∈ G such that g ∗ h = h ∗ g = e

(and in this case one denotes h as g−1).

A group where g ∗ h = h ∗ g for every g, h is called commutative or abelian. When a group G
is abelian, one usually uses the notation + instead of ∗, 0 instead of e, and −f instead of f−1.

When the binary operation is understood, we often just write G for a group rather than (G, ∗),
and write gh rather than g ∗ h.

Example 6.2. We see some examples of groups. In each case, consider which element is the
identity and, for each element of the set, what the inverse might be.

(1) With the binary operation of addition, Z,Q,R,C are abelian groups.
(2) With the binary operation of multiplication, Q \ {0},R \ {0},C \ {0} are abelian groups.
(3) The unit circle in C, that is {z ∈ C : |z| = 1}, with multiplication, is an abelian group.
(4) An important example of a non-commutative group is denoted as GL(n,R), where GL

stands for “general linear”. This is the set of all n × n real invertible matrices, with ∗
being matrix multiplication.

(5) Given any n ∈ N, the set of bijections of {1, . . . , n} with composition of functions forms a
group, denoted Sn, the symmetric group. Consider why this group has n! elements.

Many would argue that it is not natural to work with just one binary operation. With integers,
matrices, functions, etc. we have two operations: addition and multiplication. This motivates deal-
ing with abstract structures which involve two algebraic operations. Perhaps unsurprisingly, these
operations are referred to as abstract addition and abstract multiplication. Of these structures,
we skip the most general one, called a ring (motivated by polynomials with integer coefficients)
and pass on to the most restrictive one, called a field. A field F is a set of numbers for which the
binary operations of addition, subtraction, multiplication and division are defined and satisfy the
usual rules. For our purposes, a list of examples is probably sufficient, but the axioms are also
listed below. Such algebraic objects are studied in Algebra 2.

Definition 6.3. A field (F,+,×) consists of a set F of size at least two, and commutative binary
operations + and × (both from F to F) such that

• (F,+) is an abelian group with identity element 0;
• (F \ {0},×) is an abelian group; and
• α(β + γ) = αβ + αγ for all α, β, γ ∈ F.

This final condition is often referred to as ‘multiplication is distributive over addition’.

Note that the second condition precludes division by zero. From now on we will write F to
denote a field, but you can think of it as just being R or C (the two most important cases for us).



36 MATH10015, LA1B

Example 6.4. Let us see some examples of fields.

(1) The standard infinite fields are C, R and Q, the set of complex, real, or rational numbers,
with standard addition and multiplication.

(2) The sets N and Z are not fields, since in N one cannot subtract arbitrary numbers, and in
Z one cannot divide by arbitrary numbers.

(3) Sets of the form Q[i] := {a+ ib , a, b ∈ Q} or Q[
√

2] := {a+
√

2 b , a, b ∈ Q} are examples
of fields, and there many fields of this type which one obtains by extending the rational
numbers by certain complex or real numbers. These are important in Number Theory.

(4) The key example of a finite field is the set Fp = {0, 1, . . . , p−1}, where p is a prime number
and addition and multiplication are done modulo p, called the prime residue field.16 Finite
fields are widely used, e.g., in Number Theory and Cryptography.

From these examples we may notice that 0× a = 0 for every a ∈ F. Let us show that this is in
fact always the case.

Lemma 6.5. Let (F,+, ·) be a field with additive identity 0. Then a ·0 = 0 ·a = 0 for every a ∈ F.

Proof. Note that our definition of 0 is that a + 0 = 0 + a = a for every a ∈ F. Calling on the
axiom that multiplication is distributive over addition, for any a ∈ F we have

a · (0 + 0) = a · 0 + a · 0 and a · (0 + 0) = a · (0) = a · 0
from which a ·0+a ·0 = a ·0 becomes a ·0 = 0 (we can add −(a ·0) to both sides since a ·0 ∈ F). �

The notion of a field generalises R and C, and we note that the properties we have used for
these sets are properties of arbitrary fields. Therefore almost all the results we have developed
remain true if we replace R with a general field F. In particular, we can define

Fn := {(x1, x2, . . . , xn) : x1, x2, . . . , xn ∈ F}
i.e., the space of vectors with n components given by elements of F. We can also define

Mm,n(F) := {A = (aij) : aij ∈ F }
the set of matrices with elements in F. Matrix multiplication only relies on addition and multi-
plication, and so applies equally well in this new setting. More precisely, the equation Ax = y
corresponds to

yi =

n∑
j=1

aijxj for i = 1, 2, . . . ,m

and the theory of systems of linear equations we developed before remains valid if we replace R
by a general field F. Thus we can consider the equation Ax = b where the coefficients of A and
entries of b are in F, and the entries of x are sought in F. Hence if F = Q, then we have rational
coefficients and look for rational solutions only, whereas if F = C then we allow everything to be
complex. Since elementary row operations use only operations which are defined in every field F,
we can use the same methods for solving systems of linear equations. For completeness, we restate
our results in this new language.

Theorem 6.6. Let Ax = b where A ∈Mm,n(F) and b ∈ Fm are known and x ∈ Fn is not. Let M
be the row echelon form of the associated augmented matrix. Then

(i) the system has no solutions if and only if the last column of M contains a leading 1;
(ii) the system has a unique solution if every column except the last one of M contains a

leading 1;
(iii) if, in addition, F has infinitely many elements, then the system has infinitely many solu-

tions if the last column of M does not contain a leading 1 and there are less than n leading
1’s. Then there are n−k unknowns which can be chosen arbitrarily, where k is the number
of leading 1’ s of M .

This leads to an immediate, useful, result.

16Exercise: show that Fp is, indeed, a field, and explain why p must be prime.
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Corollary 6.7. Let A ∈ Mm,n(F) and assume that the only solution to Ax = 0 is x = 0. Then
m ≥ n, i.e., we need at least as many equations as unknowns to determine a unique solution.

We end our discussion on solutions to equations with the following. We do not give the proof
here, since it is identical to the case F = R.

Theorem 6.8. Let A ∈Mn(F). Then the following are equivalent:

(i) A is invertible;
(ii) detA 6= 0 in F;
(iii) The rows of A are linearly independent over F;
(iv) The columns of A are linearly independent over F;
(v) The reduced row-echelon form of A is the identity matrix;

(vi) For any b ∈ Fn, the a system of equations Ax = b has a unique solution.

6.2. Formal definition of a vector space. We are now ready to give a proper definition of a
vector space. Intuitively this definition says that we have a set of objects that we can add together
and can multiply by elements from F, but let us see a formal definition.

Definition 6.9. A vector space over F consists of an abelian group (V,+), a field (F,+F, ·F),
and the notion of multiplication by F on V , denoted by placing an element of F on the left of an
element of V . For all v, w ∈ V and λ, µ ∈ F, this scalar multiplication must satisfy

(1) λv ∈ V
(2) λ(v + w) = λv + λw
(3) (λ+F µ)v = λv + µv
(4) (λ ·F µ)v = λ(µv)
(5) 1Fv = v
(6) 0Fv = 0V

where 0F and 1F denote the identity elements of the groups (F,+F) and (F \ {0F}, ·F), respectively.
As with groups, we omit the subscripts (for +F, ·F, 1F, 0F, and 0V ) if the meaning is clear. Thus
‘+’ denotes the binary operation for V and for F: we did this when working with Rn over R.

Elements of V are called vectors and elements of F are called scalars. We will now try to
refrain using boldface for vectors, mostly assuming the convention that vectors are Latin u, v, w,
etc., while scalars are Greek such as λ, µ, ε, υ, ρ, η, κ, α. With this convention, 0 denotes both the
zero vector in V and the zero scalar in F (which are distinct things). One can find different but
equivalent sets of axioms. In particular, the last property follows from the others.

Lemma 6.10. Axiom (6) in Definition 6.9 is redundant (it follows from the other axioms).

Proof. We have v = 1v = (1+0)v = 1v+0v = v+0v, and so v = v+0v. Now add −v, the inverse
to v in (V,+), to both sides. This gives 0 = 0 + 0v = 0v. �

Lemma 6.11. Let V be a vector space over F. Then 0 ∈ V is unique, and for each v ∈ V the
inverse element −v ∈ V is also unique.

Proof. (The proof is exactly that used for any group.) Assume there is another zero 0′ 6= 0. Then
0′ + 0 is equal simultaneously to 0′ and 0, a contradiction. Now let v ∈ V and assume there
are distinct u,w ∈ V with v + w = v + u = 0. Adding the element −v to both sides, we get
u = w = −v. �

Example 6.12. We note that a vector space can be finite. As an example, we will carefully check
the axioms are satisfied for the vector space V = (F2)2 over the field F2 of 2 elements. Here we
visualise V as consisting of vectors of length two, where the entries are in F2 (and so are either 0
or 1).

(F2)2 =

{(
0
0

)
,

(
1
0

)
,

(
0
1

)
,

(
1
1

)}
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Then the addition + for V is component-wise, that is(
a1
a2

)
+

(
b1
b2

)
=

(
a1 + b1
a2 + b2

)
where a+ c and b+d are understood by the addition in F2: 0+0 = 0, 0+1 = 1+0 = 1, 1+1 = 0.
We can check that (V,+) is an abelian group. This binary operation is closed, the identity is
(0, 0)t ∈ V , each element is its own inverse (check this), and the addition is associative since it is
associative component-wise in F2. We could actually check associativity directly, by checking for
any a1, a2, b1, b2, c1, c2 ∈ F2 that((

a1
a2

)
+

(
b1
b2

))
+

(
c1
c2

)
=

(
a1
a2

)
+

((
b1
b2

)
+

(
c1
c2

))
.

The scalar multiplication is also thought of component-wise. In particular, for any λ ∈ F2 we have

λ

(
a1
a2

)
=

(
λa1
λa2

)
where λa1 and λa2 are computed using the multiplication in F2: 0 · 0 = 0 · 1 = 1 · 0 = 0 and
1 · 1 = 1. We now go through each axiom of Definition 6.9 in turn. In general we would compute
each side separately and see that they are equal. Let us say that v = (a1, a2)t and w = (b1, b2)t

where a1, a2, b1, b2 ∈ F2. Note that checking (6) and (5) early on is often helpful.

(1) λv ∈ V . Since multiplication in F2 is a binary operation, this means that λa1 and λa2 are in
F2 and so λv ∈ V for any λ ∈ F2 and v ∈ V .

(6) 0Fv = 0V . Although not technically needed in light of Lemma 6.10, we show this to simplify
our later computations. We note that

0 ·
(
a1
a2

)
=

(
0 · a1
0 · a2

)
=

(
0
0

)
since 0 · a = 0 for every a ∈ F2.

(5) 1Fv = v. In a way akin to (6), we see that

1 ·
(
a1
a2

)
=

(
1 · a1
1 · a2

)
=

(
a1
a2

)
since 1 · a = a for every a ∈ F2.

(2) λ(v + w) = λv + λw. The standard approach would be to find each side and note they are
equal. In our case V contains only 4 elements and our scalar λ can only be from F2 = {0, 1}. If
λ = 0, then

(v + w) =

((
a1
a2

)
+

(
b1
b2

))
=

(
a1 + b1
a2 + b2

)
where a1 + b1, a2 + b2 ∈ F2

and so λ(v+w) = (0, 0)t. The same computation shows that λv = (0, 0)t and λw = (0, 0)t meaning
λv + λw = (0, 0)t + (0, 0)t = (0, 0)t = λ(v + w). If λ = 1 then the above computation shows that
λ(v + w) = (a1 + b1, a2 + b2)t. We then see that λv = (a1, a2)t and λw = (b1, b2)t. Hence

λv + λw = (a1, a2)t + (b1, b2)t = (a1 + b1, a2 + b2)t

which is the same expression we had for λ(v + w).

(3) (λ +F µ)v = λv + µv. Again it is best to find each side, but to more concrete we work with
(F2)2 we find each possibility. Note λ, µ ∈ {0, 1}. Then the possibilities for the left hand side are

(0 +F 0)v = 0v = 0, (0 +F 1)v = 1v = v, (1 +F 0)v = 1v = v, and (1 +F 1)v = (0)v = 0

and the corresponding possibilities for the right hand side are

(0)v+(0)v = 0+0 = 0, (0)v+(1)v = 0+v = v, (1)v+(0)v = v+0 = v, and (1)v+(1)v = v+v = 0

where the last equation holds since a+ a = 0 for any a ∈ F2.

(4) (λ ·F µ)v = λ(µv). We again consider all of the possibilities (rather than the general approach
of finding an algebraic expression for each side). We note that if 0 ∈ {λ, µ}, then λ ·F µ = 0. We
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then note that the same behaviour occurs for the expression λ(µv). Finally, (1 ·F 1)v = 1v = v
and 1(1v) = 1(v) = v. Hence (λ ·F µ)v and λ(µv) are equal.

Example 6.13. We see some more examples of vector spaces. It is worth writing down the
addition and scalar multiplication in each case, and checking that the vector space axioms are
satisfied.

(1) If we choose V := Rn and F := R or V := Cn and F := C then we obtain the objects Rn
and Cn that we have been used to so far.

(2) The above generalises in the natural way. With V := Fn, we obtain a vector space over
F. This is with component-wise addition of vectors and our usual scalar multiplication.

(3) Take V = C but now choose F = R. Then V is a vector space over R.
(4) For Mm,n(F) := {A = (aij) : aij ∈ F}, we can define addition by (aij) + (bij) := (aij + bij)

and scalar multiplication by λ(aij) := (λaij).

6.3. Subspaces. As in Rn, we can look at subspaces of general vector spaces.

Definition 6.14. Let V be a vector space over F. A subset U ⊂ V is called a subspace if U is
a vector space over F with the addition and scalar multiplication induced by V .

This is a natural definition, let us look at some examples.

Example 6.15 (Example 6.13 continued). We will mostly continue with Rn and Cn.

(1) For V := Rn over R, the examples of linear subspaces are all subspaces. These were often
expressed as spans, which we will see again soon.

(2) For V := C2 over C, the set {λ(1, 0) : λ ∈ C} is a subspace of V .
(3) For V := C2 over C, the set {λ(1, 0) : λ ∈ R} is not a subspace of V .
(4) For V := C2 over R, the set {λ(1, 0) : λ ∈ R} is a subspace of V .
(5) For V := M2(C) over C, we have that {λI2 : λ ∈ C} is a subspace of V .17

The drawback of this definition is that in order to check it we have to go through all the axioms
for a vector space. Luckily, there’s a simpler criterion, which comes about by noting which axioms
automatically hold for an arbitrary subset.

Theorem 6.16 (The subspace test). Let V be a vector space over F. A subset U ⊂ V is a subspace
if the following three conditions hold.

(i) That U is not empty, i.e. U 6= ∅.
(ii) That U is closed under addition: u+ u′ ∈ U for all u, u′ ∈ U .
(iii) That U is closed under multiplication by scalars: λu ∈ U for all λ ∈ F and u ∈ U .

Proof. We need to show that U with the addition and scalar multiplication induced by V is a
vector space, i.e., it satisfies all the axioms in Definition 6.9. Since U 6= ∅, the first condition
is fulfilled and there exists a u ∈ U . Axioms (2),(3), (4) and (5) are simply inherited from V.
Next we check that (U,+) is an abelian group. Closedness is followed from condition (ii), and
associativity and commutativity are inherited from the abelian group (V,+). For any u ∈ U, the
element (−1)u = −u is also in U , by (iii). To see that −u is the inverse for u in (U,+) we write
(−1)u+u = (−1+1)u = 0u, since axiom (3) is fulfilled. We need to observe that 0u is the identity
element of (U,+), then existence of inverse and identity element is proved. As V is a vector space,
by the last axiom in Definition 6.9 we have 0u = 0V , where 0V denotes the identity element of
(V,+). Now, any element u ∈ U is also an element in (V,+), and we have u+0V = 0V +u = u. So
0V is also playing the role of the identity element in (U,+). Now we have checked all the axioms
of Definition 6.9 and the proof is complete. �

The above theorem gives us a simple test to check whether a given subset is a subspace. The
conditions are also generally easy to check. We will see many uses of this test in the remainder of
our course. The first applications are given below.

Lemma 6.17. Let V be a vector space over F and U = {0}. Then U is a subspace of V .

17Here, I2 denotes the 2× 2 identity matrix.
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Lemma 6.18. Let V be a vector space over F and U,W ⊂ V be subspaces. Then U ∩W is also
a subspace of V .

Proof. We use the subspace test.

• Non-empty: 0 is in both U and W , and hence in U ∩W .
• Closed under addition: take v, v′ ∈ U ∩W , then v, v′ ∈ U and v, v′ ∈W . Hence v+v′ ∈ U

and v + v′ ∈W (because each of these are subspaces). Hence v + v′ ∈ U ∩W .
• Closed under scalar multiplication: take v ∈ U ∩W and λ ∈ F. Then λv ∈ U and λv ∈W

(again because each of these are subspaces). Hence λv ∈ U ∩W .

Hence U ∩W satisfies all 3 conditions for the subspace test, and is a subspace of V over F. �

We end this section with more examples of vector spaces and subspaces, and start by applying
the subspace test to some specific subsets.

Example 6.19. Before looking at the below, all of the subsets given in the previous example can
be checked using the subspace test.

(1) Let V = Fn over F and U = {(a1, a2, . . . , an) : a1 = 0}. Then U is non-empty, and closed
under addition and scalar multiplication. Hence U is a subspace of V .

(2) Let V = Cn over C and U = {(a1, a2, . . . , an) : a1 = 1}. Then U is non-empty but fails
to be closed under addition or scalar multiplication. Is this true if C is replaced by F2?

(3) Let V = Q2 over Q and U = Z2 = {(x, y) ∈ Q2 : x, y ∈ Z}. Then U is non-empty and
closed under addition, but not under scalar multiplication.

(4) Let V = R2 over R and U = {(x, 0) ∈ R2} ∪ {(0, y) ∈ R2}. Then U is non-empty and
closed under scalar multiplication, but not closed under addition.

Example 6.20. Consider the set of functions from the set S := {2, 4, 5} to R. This is a vector
space V over R, with addition given by (f + g)(x) := f(x) + g(x) for all x ∈ S and scalar
multiplication given by (λf)(x) := λf(x) for all x ∈ S. Consider the following:

• What is the zero element, i.e. 0, of V ?
• Given a function f ∈ V , what is the inverse of f in (V,+)?
• What does a subspace consist of in this case? Can you find examples/non-examples?

Example 6.21. We end with a slightly more elaborate example. Let V = P(R) denote the set of
all polynomials with real coefficients. This is a vector space over R, with addition being the usual
addition of polynomials, and scalar multiplication being defined as λ

∑n
i=0 aix

i =
∑n
i=0 λaix

i. We
now consider some subsets of V , and determine which of these are subspaces.

(1) Real polynomials of degree at most 3.
(2) Real polynomials of degree exactly 2.
(3) Real polynomials p with p(1) = 0.
(4) The union of S1 := {p(x) = bx+ a : a, b ∈ R} and S2 := {p(x) = bx2 + ax : a, b ∈ R}.
(5) The intersection of S1 and S2. What does this look like?
(6) Polynomials in S1 with the property that p(1) = 0. What do these look like?
(7) Real polynomials with cubic coefficient equal to their quadratic coefficient.
(8) Polynomials with coefficients in Z. (How about coefficients in Q?)
(9) Real polynomials with constant coefficient double that of their quadratic coefficient.

(10) Real polynomials whose coefficients sum to 0. (How about those which sum to 1?)
(11) Real polynomials p with at least 2 values a1, a2 ∈ R such that p(a1) = p(a2) = 0.
(12) Real monic polynomials (those with leading coefficient 1).

Example 6.22. Another vector space is given by V = {(aj)j∈N , , aj ∈ F}, the set of infinite
sequences of elements from F, i.e., (aj)j∈N is a shorthand for the sequence (a1, a2, a3, a4, . . .)
where the numbers aj are chosen from F. On V we can define

• addition: (aj)j∈N + (bj)j∈N := (aj + bj)j∈N
• scalar multiplication: λ(aj)j∈N := (λaj)j∈N

which is similar to the case Fn and so V is often denoted as F∞.
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7. Spans, linear independence, and dimension

Another common way in which subspaces occur is by taking all the linear combinations of a
given set of elements from V . The definition below is similar to the one we have seen previously
for Rn.

Definition 7.1. Let V be a vector space over F and S ⊂ V a subset.

(i) Then v ∈ V is a linear combination of elements from S if v = λ1v1 + λ2v2 + . . .+ λkvk
for some v1, v2, . . . , vk ∈ S and λ1, λ2, . . . , λk ∈ F.

(ii) The span of S, denoted span(S), is the set of all linear combinations of elements from S.

The integer k that appears in part (i) can be an arbitrary number. If S is finite and has n
elements, than it is natural to choose k = n. In the case where S contains infinitely many elements,
we may be tempted to alter our definition. We will not! A linear combination always contains
only a finite number of terms, and the span is always defined as the set of linear combinations with
finitely many elements from S. The reason for this restriction is that for a general vector space
we have no notion of convergence of infinite sums, so we simply cannot say what the meaning of
an infinite sum would be18. The span of a subset is actually a subspace.

Lemma 7.2. Let V be a vector space over F and S ⊂ V a subset with S 6= ∅. Then spanS is a
subspace of V .

Proof. We again use the subspace test.

• Since S is nonempty, there exists a v ∈ S and so v = 1v ∈ spanS, and spanS 6= ∅.
• The sum of two linear combinations is again a linear combination, and so the set spanS

is closed under addition.
• Any multiple of a linear combination is again a linear combination, and so spanS is closed

under scalar multiplication.

Hence Theorem 6.16 states that spanS is subspace. �

Example 7.3. We consider the examples from the last section, but expressed as spans.

(1) From Example 6.13, the vector space M2(C) can be expressed as

span

{(
1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)}
.

(2) The subspace of M2(C) given in Example 6.15 was produced by considering a span:{
λ

(
1 0
0 1

)
: λ ∈ C

}
= span

{(
1 0
0 1

)}
.

(3) The set of polynomials of degree at most n is naturally expressed as a span. Take

Sn := {1, x, x2, . . . , xn},
of all simple powers ranging from 0 to n. Then Sn ⊂ P(R) and spanSn is a subspace of
P(R) consisting of polynomials of degree at most n. Defining spanSn =: Pn(R) appears
logical in this instance.

(4) One may now wonder about a set that spans P(R), and whether this set even exists. We
need an infinite set in this case (a finite set will be contained within spanSn for some
n ∈ N). A reasonable choice would be

S∞ := {xn : n = 0, 1, 2, . . .} ⊂ P(R).

Notice that P∞ := spanS∞ consists only of finite linear combinations of powers, i.e.,
p(x) ∈ P∞ if there exists a k ∈ N and n1, . . . , nk ∈ N, p1, . . . , pk ∈ F such that

p(x) =

k∑
i=1

pix
ni

18Ok, this is not quite true. When we have a norm on our vector space, we can drop this restriction and allow
infinite linear combinations. We will mention an example of this later, but you need not dwell on this idea.
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and so P∞ = P(R) and we have that P(R) is therefore a vector space.
(5) Let S := {ei : i ∈ N} where ei denotes a ‘vector’ having entries indexed by N with

ei(j) := δij . We can think of these as elements of R∞ from Example 6.22, that is,
sequences consisting of real entries. Then spanS is not equal to R∞ but is rather a
subspace, most easily stated as the set of sequences in R∞ with only a finite number of
nonzero entries. That is, for each element in spanS, there is some N ∈ N such that an = 0
for every n ≥ N . This may actually remind us of the vector space P(R).

Following the same strategy as for subspaces in Rn, we want to see if we can pick ‘nice’ subsets
B ⊂ V such that V = spanB and B is in some sense optimal (is of minimal size). Such a set
will be called a basis, and the size of the set will be called the dimension of V . This endevour of
‘smallest possible’ leads naturally to the notions of linear dependence and independence.

Definition 7.4. Let V be a vector space over F and S ⊂ V .

(a) We say that S is linearly dependent if there exist distinct v1, v2, . . . , vk ∈ S and
λ1, λ2, . . . , λk ∈ F with {λ1, . . . , λk} 6= {0} such that

λ1v1 + λ2v2 + . . .+ λkvk = 0.

(b) We say that S is linearly independent if for any distinct v1, . . . vk ∈ S the equation

λ1v1 + . . .+ λkvk = 0

has only the trivial solution in F, namely λ1 = · · · = λk = 0.

Linear dependence means that we can find a collection of vectors v1, . . . , vk in S and coefficients
λ1, . . . , λk ∈ F \ {0} such that λ1v1 + . . .+ λkvk = 0. This means in particular that

(7.1) v1 =
−1

λ1
(λ2v2 + . . .+ λkvk).

Thus if S′ := S\{v1}, then spanS = spanS′. So if S is linearly dependent, then one can find a
smaller set which has the same span as S. This useful observation can be expressed as a lemma.

Lemma 7.5. Let V be a vector space over F and S ⊂ V . Then S is linearly dependent if and
only if there exists a v ∈ S such that spanS = span(S\{v}).

Proof. If spanS = span(S\{v}), then v ∈ span(S\{v}) meaning v is a linear combination in S\{v}
and so S is linearly dependent. Now assume S is linearly dependent. Then, by (7.1), there is an
element v := v1 ∈ S which can be written as a linear combination v1 = µ2v2 + . . .+µkvk for some
v2, . . . vk ∈ S \ {v1}. Now assume y ∈ spanS. Then y can be written as a linear combination of
elements from S. If v1 is not contained in this linear combination, then y ∈ span(S\{v1}). If v1
is contained in this linear combination, then

y = λ1v1 + λ2w2 + . . .+ λnwn

= λ1(µ2v2 + . . .+ µkvk) + λ2w2 + . . .+ λnwn

= (λ1µ2)v2 + . . .+ (λ1µk)vk + λ2w2 + . . .+ λnwn

where (λ1µ2)v2 + . . .+ (λ1µk)vk, λ2w2 + . . .+ λnwn ∈ span(S\{v1}). Hence y ∈ span(S\{v}) and
spanS = span(S\{v}). �

Example 7.6. We consider some examples of linear dependence and independence.

(i) Let V = C2 over C and v1 = (1, 1) and v2 = (i, i). Then v1 + iv2 = 0, and so the set
S = {v1, v2} is linearly dependent. Note that the previous lemma therefore applies.

(ii) If we view V = C2 as a vector space over R, then v1 = (1, 1) and v2 = (i, i) are linearly
independent, since in order that λ1v1 + λ2v2 = 0 we must have λ1 = −iλ2 which is
impossible for nonzero λ1, λ2 ∈ R.19

(iii) The set Sn = {1, x, x2, . . . , xn} is linearly independent. We will show this in the exercises.

19The take home message here is that linear dependence or independence can depend on the field F we choose.
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Other than determining linear dependence by observation, it can be computationally frustrating
to determine whether a set is linearly independent (by solving simultaneous linear equations).
Remark 3.13 is of great help here, since it says that we can merely compute the determinant of
the change of basis matrix.

Example 7.7. For each set we decide on linear independence by computing the determinant.

(i) For v1 = (1, 2i), v2 = (−i, 3) ∈ C2 we find det

(
1 −i
2i 3

)
= 1. Hence the vectors are

linearly independent over C.
(ii) For v1 = (1,−1, 3), v2 = (2, 0,−1), v3 = (−1,−2, 0) ∈ C3 we find

det

 1 2 −1
−1 0 −2
3 −1 0

 = −15,

and so {v1, v2, v3} are linearly independent in V = C3 over C.
(iii) Given S ⊂ Rn that is linearly independent, we automatically have that S is linearly

independent in V = Cn over C (and also linearly independent in V = Cn over R).

We are now ready for the definition of a basis.

Definition 7.8. Let V be a vector space over F. A subset B ⊂ V is called a basis of V if

(i) B spans V , i.e., V = spanB; and
(ii) B is linearly independent.

Example 7.9. Many of the sets we have seen are actually bases.

(i) A field F as a vector space over itself requires at least one element to span. In fact, any
non-zero element of F is a basis.

(ii) Let V = Fn, then E = {e1, e2, . . . , en}, with the jth entry of ei being given by the
Kronecker delta function δij , is a basis. It is known as the standard basis of Fn.

(iii) The set Sn = {1, x, x2, . . . , xn} is a basis for Pn(R).

The proof of the following is almost identical to the one for Rn we saw previously.

Proposition 7.10. Let V be a vector space over F and B ⊂ V a basis of V . Given v ∈ V \ {0},
there exist unique v1, v2, . . . , vk ∈ B and λ1, λ2, . . . , λk ∈ F \ {0} such that

v = λ1v1 + . . .+ λkvk.

Proof. The existence of such v1, . . . , vk and λ1, . . . , λk follows from the fact that B spans V . We
now wish to show that the combination is unique. For the specific v ∈ V above, imagine that
there exist w1, . . . , wn ∈ B and µ1, . . . , µn ∈ F \ {0} such that v = µ1w1 + . . . + µnwn. If
{v1, . . . , vk} ∩ {w1, . . . , wn} = ∅, then

λ1v1 + . . .+ λkvk = µ1w1 + . . .+ µnwn ⇒ λ1v1 + . . .+ λkvk + (−µ1)w1 + . . .+ (−µn)wn = 0

which, because B is linearly independent, means {λ1, . . . , λk, µ1, . . . , µn} = {0}. The same logic
means that, if there is wi 6∈ {v1, . . . , vk} or vj 6∈ {w1, . . . , wn}, then µi or λj must be zero. Hence
{v1, . . . , vk} = {w1, . . . , wn} and so k = n and, after potentially reordering, we have that wi = vi
for i = 1, . . . , k. Then

λ1v1 + . . .+ λkvk = µ1v1 + . . .+ µnvk ⇒ (λ1 − µ1)v1 + . . .+ (λk − µk)vk = 0

which is a linear combination equal to zero. Now, because B is a linearly independent set, we must
have that λi = µi for i = 1, . . . , k. �

Our main goal is now to show that if V has a basis B with finitely many elements, then any
other basis of V will have the same number of elements. Hence the number of elements a basis
contains is well defined and can be called the dimension of V . For this reason we restrict ourselves
to the case of vector spaces which can be spanned by finite sets. We have seen vector spaces
without this property: P(R) and F∞.
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Definition 7.11. We call a vector space V over a field F finite dimensional if there exists a
set S ⊂ V with V = spanS and |S| <∞. Otherwise, V is infinite dimensional.

The following is not true in the infinite dimensional setting, unless we assume something known
as the axiom of choice (which we will leave for now).

Proposition 7.12. Let V be a vector space over F and S ⊂ V a set with |S| <∞ and spanS = V .
Then S contains a basis of V . In particular, every finite dimensional vector space has a basis.

Proof. We iterate Lemma 7.5 until we obtain a linearly independent set. If S is linearly indepen-
dent, then S is already a basis and we are done. If S is linearly dependent, then by Lemma 7.5
there exists a v1 ∈ S such that S1 := S\{v1} spans V . Now, if S1 is linearly independent, then
it forms a basis. If S1 is not linearly independent, we apply Lemma 7.5 again to obtain a smaller
set S2 which still spans V . Continuing this process we get a sequence of sets S, S1, S2, . . . with
|Si+1| = |Si| − 1, i.e., with strictly decreasing size, and since we started with a finite set S this
sequence must stop. Hence at some step k the corresponding set Sk will be linearly independent
and span V (and therefore be a basis of V ). �

The next result shows that a linearly independent set cannot contain more element than a basis,
and is our main tool to show that any two bases have the same number of elements.

Theorem 7.13. Let V be a vector space over F, B ⊂ V a basis with |B| = n ∈ N, and S ⊂ V a
linearly independent subset. Then |S| ≤ |B|.

Proof. Let B = {v1, . . . , vn} and assume we can choose distinct w1, . . . , wn+1 ∈ S. Our approach
will be to replace vi with wi for i = 1, . . . , n so that wn+1 is a linear combination of w1, . . . , wn.20

Note that w1 ∈ V . Hence w1 ∈ spanB, and so w1 =
∑
λivi. After reordering the vi, we

can assume that λ1 6= 0, and so rearrange w1 =
∑
λivi to express v1 as a linear combination

of {w1, v2, . . . , vn} =: B(1). Thus v1 ∈ spanB(1), and B(1) spans V . Thus w2 ∈ B(1), and so
w2 = λ′1w1 +

∑n
i=2 λ

′
ivi. If λ′2, . . . , λ

′
n are all zero, then w2 is a multiple of w1, contradicting

that S is linearly independent. Hence we can again reorder the vi to assume that λ′2 6= 0. Thus
B(2) := {w1, w2, v3, . . . , vn} spans V and continuing in this way B(n) := {w1, w2, . . . , wn} spans V .
Hence wn+1 ∈ spanB(n), contradicting that S is linearly independent. �

Corollary 7.14. Let V be a vector space over F. If V has a basis with finitely many elements,
then any other basis of V has the same number of elements.

Proof. Let B,B′ ⊂ V be two bases of V . Since B′ is linearly independent, we get |B′| ≤ |B|. But
reversing the roles of B and B′ we get as well |B| ≤ |B′|, and hence |B| = |B′|. �

An immediate consequence of the previous corollary is that our naive notion of dimension (being
the size of a basis) is well defined.

Definition 7.15. Let V be vector space and assume that V has a basis B with finitely many
elements. Then we define the dimension of V as |B|, and denote this by dimV .

Assuming the ultrafilter lemma21, this definition can be used for infinite bases as well, i.e., we
can define the dimension of a vector space to be the cardinality of a basis. We will not dwell
on this, but rather mention, for interest, that the approach in the proof of Theorem 7.13 can be
extended to the infinite dimensional setting, and then Corollary 7.14 immediately applies.

Example 7.16 (Example 7.9 continued.). In fact, many sets we have seen are bases.

(i) We have that dimFn = n, since E = {e1, e2, . . . , en} is a basis of Fn.
(ii) We have dimMm,n(F) = mn, since if we set Ekl ∈ Mm,n(F) to have ijth entry equal to

δikδjl, then the set of Ekl, k = 1, . . . ,m, l = 1, . . . , n, form a basis of Mm,n(F).
(iii) With the basis Sn = {1, x, x2, . . . , xn} , we see that dimPn(R) = n+ 1.

20For this reason, the result is sometimes referred to as the Steinitz–Mac Lane exchange lemma (where exchange

refers to how the result is proved, and Steinitz and Mac Lane proved the result in two different instances).
21A logically weaker assumption than the axiom of choice, which we leave for discussion by the logic/set theorists.
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Lemma 7.17. Assume S ⊂ V is linearly independent and spanS 6= V . Given v ∈ V \ spanS, the
set S ∪ {v} is linearly independent.

Proof. Consider the linear combination

λ1v1 + . . .+ λkvk + λv = 0

where v1, . . . vk ∈ S. If λ 6= 0, then v = −1/λ(λ1v1+ . . .+λkvk) ∈ spanS, which is a contradiction.
Thus λ = 0. But the remaining vectors are in S and, since S is linearly independent, we must
have that λ1 = . . . = λk = 0. �

Proposition 7.18. Let V be a vector space over F and assume V is finite dimensional. Then
any linearly independent subset S ⊂ V can be extended to a basis B.

Proof. If spanS = V , then S is already a basis. If spanS 6= V , apply the previous lemma to
extend S to S(1) := S ∪{v} where v ∈ V \ spanS. Continuing in this way, either S(1) spans V and
so is a basis of V , or otherwise we can extend S(1) to S(2) := S(1) ∪ {v′} where v′ ∈ V \ spanS(1).
But note that the sets keep strictly increasing in size and are still linearly independent. Hence, by
Theorem 7.13, the process has to stop. �

Let us summarise key properties for bases of finite dimensional vector spaces.

Corollary 7.19. Let V be a vector space of finite dimension and let S ⊂ V .

(i) If S is linearly independent, then S has at most dimV elements.
(ii) If S spans V , then S has at least dimV elements.
(iii) If S is linearly independent and has dimV elements, then S is a basis of V .
(iv) If S spans V and has dimV elements, then S is a basis of V .

Proof. We show each statement in turn.

(i) This is a rephrasing, with our new terminology of dimension, of Theorem 7.13.
(ii) Assume that |S| < dimV . Applying Proposition 7.12, S contains B, a basis for V . But

then |B| ≤ |S| < dimV , a contradiction.
(iii) Take S as linearly independent but not a basis for V . Then S cannot span V . Applying the

previous proposition, we can extend S to a basis B, where |B| > |S| = n. This contradicts
dimV = n.

(iv) Since S spans V , Proposition 7.12 states that S contains a basis for V . Let us denote this
specific basis by B. Assuming S 6= B would mean |B| < n, a contradiction. �

This corollary gives a simpler criterion to detect a basis than the original definition. If we know
the dimension of V , then any set which has dimV elements and is either linearly independent or
spans V must be a basis. This means, in the finite dimensional case, we only have to check one of
the two conditions in the definition of a basis. We see some examples of this below.

Example 7.20 (Example 7.7 continued.). We decide on linear independence to work out which
sets are bases.

(i) Since v1 = (1, 2i) and v2 = (−i, 3) are linearly independent, they form a basis of C2.
(ii) Similarly v1 = (1,−1, 3), v2 = (2, 0,−1), v3 = (−1,−2, 0) ∈ C3 were linearly independent,

and so they form a basis of C3.
(iii) For V = P3(R) we had the basis B = {1, x, x2, x3}. Consider the polynomials22

T0(x) = 1, T1(x) = x, T2(x) = 2x2 − 1, T3(x) = 4x3 − 3x.

For the change of basis matrix we find the constants cij satisfying Tj =
∑
i cijx

i. Then

C =


1 0 −1 0
0 1 0 −3
0 0 2 0
0 0 0 4


and since detC = 8, the polynomials {T0, T1, T2, T3} form a basis of P3(R).

22These are the first four so-called Chebycheff polynomials.
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Finally let us look at subspaces; the following appears quite natural.

Proposition 7.21. Let V be a vector space over F with dimV = n and U a subspace of V .

(i) Then U is finite dimensional, and furthermore dimU ≤ dimV .
(ii) If dimU = dimV , then U = V .

Proof. We start with (i). Assume, for a contradiction, that dimU > n. Then we can find

u1 ∈ U \ {0}, u2 ∈ U \ span{u1}, . . . , un+1 ∈ U \ span{u1, . . . , un}.
Lemma 7.17 states that u1, . . . , un+1 are linearly independent in V , contradicting Corollary 7.19(i).
For (ii), consider if we had a subspace U of V with dimU = dimV = n but U 6= V . Hence we
have a basis BU := {u1, . . . , un} for U where BU does not span V . Choose v ∈ V \ spanBU . By
Lemma 7.17, BU ∪{v} is a linear independent subset of V . This contradicts Corollary 7.19(i). �

Note that the definition of dimension depends on the field we consider. For V = C2 over C, we
have the standard basis e1, e2, meaning dimC2 = 2. But we can view C2 as well as a vector space
over R. Then e1, e2 are now longer a basis, since linear combinations of e1, e2 with real coefficients
give us only vectors in R2 ⊂ C2. In this case e1, ie1, e2, ie2 do form a basis, so as a vector space
over R we have dimC2 = 4. This dependence on the field F is sometimes emphasised by putting
F as a subscript, i.e., dimF V is the dimension of V over F. In our example we found

dimC C2 = 2 and dimR C2 = 4.

The difference can be even more dramatic: viewing R as a vector space over R and over Q we get
dimR R = 1 but dimQ R =∞.

7.1. Direct sums. We have seen the notion of a direct sum for Rn. An example to have in mind
is R3 decomposed as the direct sum of the xy-plane and the z-axis23. As in other recent sections,
we wish to formalise this idea for arbitrary vector spaces.

Definition 7.22. Let V be a vector space over F and U,W ⊂ V be subspaces. Then

U +W := {u+ w ; u ∈ U , w ∈W}
is the sum of U and W . If we have U ∩W = {0}, then we use the notation U ⊕W for the sum
of U and W , and call this the direct sum of U and W .

We see that the sum and direct sum are both subspaces in the exercises.

Lemma 7.23. Let V be a vector space over F and U,W ⊂ V be subspaces satisfying U ∩W = {0}.
Then any v ∈ U ⊕W has a unique decomposition v = u+ w with u ∈ U and w ∈W .

Proof. By the definition of the sum of vector spaces there exists u ∈ U and w ∈ W such that
v = u+w. To show that they are unique let us assume that v = u′+w′ with u′ ∈ U and w′ ∈W .
Then u+w = u′ +w′ and this gives u− u′ = w′ −w. But u− u′ ∈ U and w−w′ ∈W , and since
U ∩W = {0} we must have u− u′ = 0 and w − w′ = 0. Hence u = u′ and w = w′. �

Proposition 7.24. Let V be a vector space over F and U,W ⊂ V be finite dimensional subspaces
satisfying U ∩W = {0}. Then

dim(U ⊕W ) = dimU + dimW.

Proof. Let BU and BW be bases of U and W respectively. We consider the set BU ∪ BW .

• We first see that spanBU ∪BW = U⊕W . This follows since any v ∈ U⊕W can be written
as v = u+ w and u ∈ spanBU and w ∈ spanBW .

• Next, BU ∪ BW is linearly independent. Lemma 7.23 states, by the uniqueness of decom-
position, that the only solution to 0 = u+w is if u = 0 and w = 0. Since BU and BW are
linearly independent, the only way to get 0 as a linear combination is to choose all of the
coefficients to be 0.

23In this case every vector in R3 can be uniquely represented as the sum of a horizontal vector in the xy-plane
and a vector parallel to the z-axis.
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Hence BU ∪ BW is a basis for U ⊕W . Using that BU ∩ BW = ∅, we get |BU ∪ BW | = |BU |+ |BW |
and so dimU ⊕W = dimU + dimW . �

We can generalise the above to obtain dim(U +W ) = dimU + dimW − dim(U ∩W ).

Definition 7.25. Let V be a vector space over F, and U a subspace of V . Then a subspace W of
V is called a complement of U in V if V = U ⊕W .

An immediate question is whether a complement always exists. We answer this in the finite
dimensional case (with the assumption that every finite dimensional vector space has a basis; we’ll
show this later).

Proposition 7.26. Let V be a finite dimensional vector space over F and U ⊂ V a proper
subspace. Then there exists a subspace W which is a complement of U in V .

Proof. Let BU be a basis of U and let BV be a basis of V with BU ⊂ BV . We claim that

W = span
(
BV \ BU

)
is a complement of U in V . By construction V = U +W , since U +W contains a basis of V . Let
v ∈ U ∩W . Then v ∈ spanBU and also v ∈ span(BV \ BU ). But BV is a basis and so linearly
independent, meaning v = 0. �

Example 7.27. We see some examples of complements. Example 7.20 is helpful for this.

(i) Let V = R2 and U = span{v} for some v ∈ V \ {0}. Then U is a line, and for any v′ ∈ V
such that {v, v′} form a basis of R2 we have R2 = span{v} ⊕ span{v′}.

(ii) For U = span{(i, 1, i), (0, i, 1)} ⊂ C3 then W = span{(1, 0, 0)} is a complement since

det

 i 0 1
1 i 0
i 1 0

 = 2

and therefore the vectors {(i, 1, i), (0, i, 1), e1} form a basis of C3 over C.
(iii) We can generalise (ii). Let U ⊂ Fn have the basis v1, v2, . . . , vk. Then to find a complement

of U , we must find vk+1, . . . , vn ∈ Fn such that v1, v2, . . . , vk, vk+1, . . . , vn form a basis of
Fn. With this setup, W := span{vk+1, . . . , vn} is the complement of U in Fn.
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8. The Rank-Nullity Theorem and Isomorphisms

We first make some observations about linear maps.

Definition 8.1. Let V and W be vector spaces over F. A function T : V →W is called linear if

(i) T (u+ v) = T (u) + T (v) for all u, v ∈ V .
(ii) T (λv) = λT (v) for all λ ∈ F and v ∈ V .

Example 8.2. Let us look at some examples involving vector spaces over R.

(i) Let λ ∈ R. We can check that Tλ : Rn → Rn, v 7→ λv is linear.
(ii) Let V = Pn(R) and W = Pn−1(R), the spaces of polynomials of degree at most n and

n − 1 respectively. Let D : V → W be D(p(x)) = p′(x), the derivative. Then D reduces
the order by 1, and so the domain and codomain are suitable. It is also linear.

(iii) Let q(x) := x3 − x2. Then Mq : Pn(R)→ Pn+3(R), p(x) 7→ q(x)p(x) defines a linear map.
(iv) Let α ∈ R. Then Tα : Pn(R)→ Pn(R), p(x) 7→ p(x+ α) is linear (called the shift map).
(v) Let a ∈ R. Then δa : P(R)→ R, p(x) 7→ p(a) is linear (called the evaluation map).

We make some initial observations for Definition 8.1.

Lemma 8.3. Let V be a vector space over F and T : V →W a linear map. Then

(i) T (0) = 0.
(ii) T (−v) = −T (v) for all v ∈ V .

(iii) If v =
∑k
i=1 λivi, with vi ∈ V and λi ∈ F for i = 1, 2, . . . , k, then T (v) =

∑k
i=1 λiT (vi).

Proof. We prove each part separately, using the properties of a linear map.

(i) We use that T (λv) = λT (v) for all λ ∈ F and v ∈ V . Setting λ = 0 gives the result.
(ii) Recall that T (v + w) = T (v) + T (w) for all v, w ∈ V . Setting w = −v, we get

T (0) = T (v − v) = T (v) + T (−v)⇒ 0 = T (v) + T (−v)⇒ −T (v) = T (−v).

(iii) We have

T (v) = T

( k∑
i=1

λivi

)
=

k∑
i=1

T (λivi) =

k∑
i=1

λiT (vi)

where properties of linear maps are applied at each stage. �

We now investigate the image of a subspace under a linear map.

Lemma 8.4. Let V,W be vector spaces over F, T : V →W a linear map, and U ⊂ V a subspace.
Then T (U) = {T (u) : u ∈ U} ⊂W is a subspace, too.

Proof. We use the subspace test.

• We know that 0 ∈ U . Then, by Lemma 8.3(i), we have that 0 ∈ T (U).
• Take w,w′ ∈ T (U). Then there exist u, u′ ∈ U such that T (u) = w and T (u′) = w′. Hence
w + w′ = T (u) + T (u′) = T (u+ u′) and so w + w′ ∈ T (u).

• Take w ∈ T (U) and λ ∈ F. Then λw = λT (u) = T (λu) and so λw ∈ T (U). �

Two important examples of subspaces are the following.

Definition 8.5. Let V,W be vector spaces over F and T : V →W a linear map.

(i) the kernel of T is defined as

kerT := {v ∈ V : T (v) = 0}.
(ii) the image of T is defined as

ImT := {w ∈W : there exists v ∈ V with T (v) = w}.

Lemma 8.6. Let V,W be vector spaces over F and T : V → W a linear map. Then kerT ⊂ V
and ImT ⊂W are subspaces.

Proof. Apply the subspace test (as we did previously with the specific case of V = Rn over R).
Note that ImT = T (V ) and so for ImT we could also just apply the previous lemma. �
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Example 8.7 (Example 8.2 continued). We find the image and kernel in each case.

(i) We note ker(T0) = V and Im(T0) = {0}. If λ 6= 0, then Im(Tλ) = V and ker(Tλ) = {0}.
(ii) Here kerD = P0(R), the space of polynomial of degree 0 and ImD = Pn−1(R).
(iii) Let p(x) ∈ Pn(R). To determine whether q(x)p(x) = 0 for all x ∈ R, we look at the

coefficients of q(x)p(x). The only way for these to all be zero is if p = 0 (check this). So
kerMq = {0}. But ImMq is harder to compute; we will find the dimension of ImMq later.

(iv) For the shift map we have ker(Tα) = {0} and Im(Tα) = Pn(R) for every α ∈ R.
(v) For the evaluation map we have ker δa = {f : f(a) = 0} and Im δa = R for every a ∈ R.

We have used bases to put the notion of dimension on a firm ground. This allows us to state
the Rank-Nullity Theorem for general vector spaces.

Definition 8.8. Let V,W be vector spaces over F and T : V →W a linear map. Then we define

(i) the rank of T as rankT := dim ImT
(ii) the nullity of T as nullity T := dim kerT .

Example 8.9. We work over R and over C.

(i) Let T : C2 → C be defined by T (z1, z2) = z1 − z2. Then T (z1, z2) = 0 if z1 = z2, i.e.,
the kernel of T consists of multiples of (1, 1), so nullity T = 1. Since T (z, 0) = z we have
ImT = C and so rankT = 1. (Note that this changes if we work with V = C2 over R.)

(ii) Let T : C2 → C3 be defined by T (z1, z2) = (z1, z2, z1 − z2). Then T (z1, z2) = 0 implies
z1 = z2 = 0, so nullity T = 0. Now ImT is spanned by w1 = (1, 0, 1) and w2 = (0, 1,−1),
since T (z1, z2) = z1w1 + z2w2. Since w1, w2 are linearly independent, we find rankT = 2.

(iii) For the derivative D : Pn(R)→ Pn−1(R), we get nullityD = 1 and rankD = n.

The rank and nullity determine some crucial properties of T . These are left as an exercise.

Proposition 8.10. Let V,W be vector spaces over F and T : V →W a linear map. Then

(i) T is injective if, and only if, nullity T = 0.
(ii) T is surjective if, and only if, rankT = dimW .
(iii) T is bijective if, and only if, nullity T = 0 and rankT = dimW .

If we know a linear map is injective or surjective, this gives us information about the image of
sets that are linearly independent or spanning.

Proposition 8.11. Let V,W be vector spaces over F and T : V →W be a linear map.

(i) Assume S ⊂ V is linearly independent and T is injective. Then T (S) ⊂ W is linearly
independent.

(ii) Assume S ⊂ V spans V and T is surjective. Then T (S) spans W .

Proof. We prove each part in turn.

(i) Any element in T (S) is of the form w = T (v) for some v ∈ S. Hence to test linear
independence, we have to see if we can find v1, . . . , vk ∈ S and λ1, . . . , λk ∈ F such

that
∑k
i=1 λiT (vi) = 0. By Lemma 8.3(iii),

∑k
i=1 λiT (vi) = T (

∑k
i=1 λivi) meaning our

condition
∑k
i=1 λiT (vi) = 0 is satisfied if and only if

∑k
i=1 λivi ∈ kerT . Calling on our

assumption that T is injective, kerT = {0} means
∑k
i=1 λivi = 0, and since S is linear

independent we must have λ1 = · · · = λk = 0. Hence T (S) is linearly independent.
(ii) As T is surjective, given any w ∈ W there exists a v ∈ V such that T (v) = w. Since S

spans V , we can find v1, . . . , vk ∈ S and λ1, . . . , λk ∈ F such that v =
∑k
i=1 λivi. Hence

w = T (v) =
∑k
i=1 λiT (vi) ∈ span{T (S)} and span{T (S)} = W . �

Corollary 8.12. Let V,W be vector spaces over F, T : V → W a linear map, and dimV < ∞.
If nullity T = 0, then

rankT = dimV.

Proof. Let BV is a basis of V . The condition nullity T = 0 means that T is injective. Then,
from the previous result, T (BV ) is linearly independent and by construction T (BV ) spans ImT .
Therefore T (BV ) is a basis of ImT and rankT = dim ImT = |T (BV )| = |BV | = dimV . �
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Example 8.13 (Example 8.2(iii) continued). We had Mq : Pn(R) → Pn+3(R), p(x) 7→ q(x)p(x)
where q(x) = x3 − x2. We found kerMq = {0} but ImMq was harder to describe explicitly. We
can gain information by applying the above result. Note nullityMq = 0 and dimPn(R) = n + 1,
meaning rankMq = n+ 1. Hence dim ImMq = n+ 1.

We can strengthen Corollary 8.12 to what is known as the Rank-Nullity Theorem.

Theorem 8.14. Let V,W be vector spaces over F, T : V → W a linear map, and dimV < ∞.
Then

rankT + nullity T = dimV.

Proof. We present two approaches, which are worthwhile filling in the details for.

Approach 1. Take a basis24 {u1, . . . , uk} for kerT , extend this to a basis for V by introducing the
vectors {v1, . . . , vm}, and then check that {T (v1), . . . , T (vm)} is a basis of size m for ImT .

Approach 2. Let U be a complement of kerT in V . Hence V = kerT ⊕U and, by Proposition 7.24,
we have dimV = nullity T + dimU . Now any v ∈ V can be written as v = ṽ + u with ṽ ∈ kerT
and u ∈ U . Hence T (v) = T (u) and so ImT = T (U). But the restriction of T to U , T |U , has
nullity T |U = 0 and rankT |U = dimT (U) = rankT , and so by applying Corollary 8.12 to T |U we
get dimU = rankT |U = rankT . �

The following is a useful application of the Rank-Nullity Theorem.

Corollary 8.15. Let V,W be finite dimensional vector spaces over F and T : V → W a linear
map.

(i) If dimW > dimV , then T is not surjective.
(ii) If dimW < dimV , then T is not injective.
(iii) If dimV = dimW , then T is surjective if and only if T is injective.

Proof. Left as an exercise. (Proposition 8.10 is helpful here). �

Example 8.16. We will see some applications of the previous result.

(i) A linear function f : R2 → R3 cannot be surjective.
(ii) A linear function g : R3 → R2 cannot be injective, and so has a non-trivial kernel.
(iii) A linear function h : R3 → R3 with h(e1), h(e2), h(e3) ∈ span{e1, e2} is clearly not sur-

jective (no vector is sent to e3) and so cannot be injective (meaning it has a non-trivial
kernel). Thus Corollary 8.15(iii) means for a linear function T : V → V that checking one
of injectivity or surjectivity determines the other one.

The word isomorphism in mathematics usually refers to a map that preserves the desired struc-
ture. In this course, linearity is significant, and isomorphic linear spaces are somehow “equal” in
linear algebra. Similar words will occur in other areas of mathematics, for example, a homeo-
morphism preserves the topology, a diffeomorphism preserves the differential structure, a group
isomorphism preserves the structure of a group. In all of these cases, an “isomorphism” is a special
kind of bijective map.

Definition 8.17. Let V,W be vector spaces over F. A linear map T : V → W that is bijective
is called an isomorphism. Two vector spaces V,W over F are then called isomorphic, denoted
V ∼= W , if there exists an isomorphism T : V →W .

Example 8.18. We work with vector spaces over R.

(i) Let V = R2, W = C, and T (x, y) := x + iy. Then T is linear and bijective, and so an
isomorphism. Hence C and R2 are isomorphic as vector spaces over R.

(ii) Let V = Rn+1 and W = Pn(R). Define T : Rn+1 → Pn(R) by

T (an, an−1, . . . , a1, a0) 7→ anx
n + an−1x

n−1 + . . .+ a1x+ a0.

This is an isomorphism, and so Pn(R) is isomorphic to Rn+1.

24A finite basis for kerT exists by Proposition 7.21.
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Note that Pn(R) and Rn+1 ‘feel’ like distinct structures. We can think of them as being equal
only if we strip them from all other properties except the ones related to addition and scalar
multiplication. With many mathematical objects, determining whether they are isomorphic can
be a real challenge. But isomorphic vector spaces must have the same dimension.

Proposition 8.19. Let V,W be vector spaces over F which are isomorphic and let dimV = n ∈ N.
Then dimV = dimW .

Proof. Let T : V →W be an isomorphism. We show two approaches.

Approach 1. Apply the Rank-Nullity Theorem so that rankT + nullity T = dimV . But T is
bijective, and so injective and surjective. Using Proposition 8.10, we see that rankT = dimW
and nullity T = 0. Hence dimW = dimV .

Approach 2. Let A be a basis of V , and set B := T (A) ⊂ W . We now apply Proposition 8.11.
Since T is injective, B is linearly independent. Since T is surjective, spanB = W . Hence B is a
basis of W . But B has the same number of elements as A, and therefore dimV = dimW . �

Remark 8.20. When reading these proofs, we may feel that the first is more straightforward. The
reason for the second approach is that it does not appeal to the fact that V is finite dimensional.
It does, however, ask that we have a basis for V . The assumption that every vector space has a
basis is equivalent to The Axiom of Choice; courses on logic and set theory will discuss this.

The above theorem means that, in order to be isomorphic, the vector spaces must have the
same dimension. Perhaps surprisingly, the inverse of this result is as well true: whenever two
vector spaces have the same dimension, over the same field, then they are isomorphic. To prove
this we introduce a specific linear map.

Definition 8.21. Let V and W be vector spaces over F and dimV = dimW = n. Given bases
A = {v1, . . . , vn} ⊂ V and B = {w1, . . . , wn} ⊂W , let

TBA(x1v1 + . . .+ xnvn) := x1w1 + . . .+ xnwn

for all x1, . . . , xn ∈ F. Note that TBA is well defined and linear since A is a basis for V .

Lemma 8.22. Let V and W be vector spaces over F with bases A and B respectively. Then TBA
is an isomorphism.

Proof. From the definition we see that ImTBA = spanB = W , since on the right hand side
all linear combinations of vectors from the basis B appear if we vary x1, . . . , xn. Hence TBA is
surjective and so Corollary 8.15(iii) states TBA is bijective (and therefore an isomorphism). �

Theorem 8.23. Let V,W be vector spaces over F with dimV = dimW = n ∈ N. Then V ∼= W .

Proof. We note that V and W have bases A = {v1, . . . , vn} and B = {w1, . . . , wn} respectively.
Hence the function TBA provides an isomorphism from V to W . �

Assuming the Axiom of Choice, Theorem 8.23 generalises to vector spaces of arbitrary dimension.

Example 8.24. We recall some observations from Example 7.16.

(i) Since dimMm,n(F) = mn, we have that Mm,n(F) ∼= Fmn.
(ii) The space P(R) is not isomorphic to Rn for any n ∈ N, since P(R) is not finite dimensional

over R whereas dim(Rn) = n.
(iii) Recall the subspace of real sequences from Example 7.3, given by V = span{ei : i ∈ N}

where each ei is a vector indexed by N with ei(j) := δij . The set {ei : i ∈ N} is linearly
independent, and so a basis, meaning dimV is countably infinite. We also found that
P(R) = span{xi : i ∈ N ∪ {0}} was of countably infinite dimension. Hence V ∼= P(R).

We provide a convenient condition to check whether a linear function is an isomorphism. Note
that detT is well defined, since it is independent from our choice of finite basis.

Lemma 8.25. Let V and W be vector spaces over F and dimV = dimW = n. Then a linear
operator T : V →W is an isomorphism if, and only if, detT 6= 0.
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9. Spaces of functions

We now consider vector spaces of functions, and see what isomorphisms can tell us about these.

Definition 9.1. Let V,W be vector spaces over F. Then L(V,W ) denotes the set of linear maps
from V to W .

Proposition 9.2. Let V,W be vector spaces over F. If f ∈ L(V,W ) is a bijection, then f−1 exists
and is in L(W,V ).

Proof. That f−1 exists follows immediately from f being a bijection. Take w,w′ ∈W . Thus there
exist v, v′ ∈ V such that f(v) = w and f(v′) = w′. Hence

f−1(w + w′) = f−1(f(v) + f(v′)) = f−1(f(v + v′)) = v + v′ = f−1(w) + f−1(w′)

as required. �

The following construction is the source of many examples of vector spaces.

Definition 9.3. Let V be a vector space over F and S a non-empty set. Then F (S, V ) denotes the
set of all functions from S to V . On F (S, V ) we have a natural addition and scalar multiplication
defined, for every f, g ∈ F (S, V ) and λ ∈ F, by

• (f + g)(s) := f(s) + g(s); and
• (λf)(s) := λf(s) for all s ∈ S.

We have that f(s), g(s) ∈ V , and hence they can be added together and also multiplied by elements
from F. We say f = g for f, g ∈ F (S, V ) if f(s) = g(s) for all s ∈ S.

It is useful to highlight a subtlety of the notion that f = g for functions f, g ∈ F (S, V ).

Example 9.4. We now see why we have not looked at P(F) for any finite field F.

(i) Given p, q ∈ P(R), we have that distinct coefficients yield distinct functions25.
(ii) In ¶(F2), we have that p(x) := x and q(x) := x2 are the same function.

Proposition 9.5. Let V be a vector space over the field F and S a non-empty set. Then F (S, V )
is a vector space over F.

Proof. We go through each vector space axiom (from Definition 6.9) in turn.

• Closed under addition: given f, g ∈ F (S, V ) we have f + g ∈ F (S, V ), since the sum of
two functions is a function from S to V .

• Commutativity of addition: note (f+g)(s) = f(s)+V g(s) = g(s)+V f(s) as f(s), g(s) ∈ V
and V is a vector space by assumption. Hence f + g = g + f as elements in F (S, V ).

• The identity element of F (S, V ) is the zero function which maps all of S to 0V .
• The inverse of f is the function −f defined by (−f)(s) := −f(s) for all s ∈ U , where we

use that each v ∈ V has an additive inverse.
• One has (f+(g+h))(u) = f(u)+(g+h)(u) = f(u)+(g(u)+h(u)) which using associativity

in V gives f(u)+(g(u)+h(u)) = (f(u)+g(u))+h(u) = (f+g)(u)+h(u) = ((f+g)+h)(u).

Hence F (S, V ) is an abelian group with respect to usual addition of functions. Then

• (λ(f + g))(s) = λ((f + g)(s)) = λ(f(s) + g(s)) = λf(s) + λg(s) = (λf)(s) + (λg)(s).
• ((λ+ µ)f)(s) = (λ+ µ)f(s) = λf(s) + µf(s) = (λf)(s) + (µf)(s).
• ((λµ)f)(s) = (λµ)f(s) = λ(µf(s)) = λ(µf)(s) = (λ(µf))(s).
• (1f)(s) = 1f(s) = f(s). (Also (0f)(s) = 0f(s) = 0, but Lemma 6.10 states this.) �

Example 9.6. We see some specific cases for the above construction.

(i) We have that F (R,R), the set of real valued functions, is a vector space over R.
(ii) With C as a vector space over C we have that F (R,C), the set of complex valued functions,

is a vector space over C.
(iii) Considering C as a vector space over R gives us F (R,C) as a vector space over R.

25One approach is to note that p, q ∈ Pn(R) for some n ∈ N, and so p(x)− q(x) can have at most n roots.
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Example 9.7. We can also construct vector spaces that we have already seen.

(i) Let S = {1, 2, . . . , n} and V = F. Then F (S,F) consists of functions f : {1, 2, . . . , n} → F.
Such a function is completely determined by the values it takes on the first n integers, i.e.,
by the list (f(1), f(2), . . . , f(n)). But this is an element in Fn, and since the functions
can take arbitrary values we find F (S,F) ∼= Fn. Another approach is that both are vector
spaces over F of dimension n.

(ii) If S = N and V = F, then an element in F (N,F) is a function f : N→ F which is defined
by the list of values it takes on all of the positive integers

(f(1), f(2), f(3), . . . , f(k), . . .)

which is nothing but an infinite sequence. Hence F (N,F) ∼= F∞.
(iii) Let S = {1, 2, . . . ,m}×{1, 2, . . . , n} = {(i, j) ; i = 1, 2, . . . ,m , j = 1, 2, . . . , n} and V = F.

Then F (S,F) ∼= Mm,n(F), the set of m× n matrices with elements in F.

Lemma 9.8. Let V,W be vector spaces over F. Then L(V,W ) is a vector space over F.

Proof. We have L(V,W ) ⊂ F (V,W ), and so can apply the subspace test.

(i) Let f0(v) := 0 for all v ∈ V . Then f0 is a linear map, and so L(V,W ) 6= ∅.
(ii) We wish to show that the sum of linear functions is a linear function. Take f, g ∈ L(V,W ).

Then (f+g)(u+v) = f(u+v)+g(u+v) = f(u)+f(v)+g(u)+g(v) = (f+g)(u)+(f+g)(v)
and (f + g)(λv) = f(λv) + g(λv) = λf(v) + λg(v) = λ(f + g)(v).

(iii) We wish to show, for any µ ∈ F and f ∈ L(V,W ), that (µf) is a linear function. We have
that (µf)(u + v) = µ(f(u + v)) = µ(f(u) + f(v)) = µf(u) + µf(v) = (µf)(u) + (µf)(v).
Similarly (µf)(λv) = µf(λv) = µλf(v) = λµf(v) = λ(µf)(v). �

With what we have seen with isomorphisms, we may keenly ask whether L(V,W ) is a vector
space that we have already seen. If it is finite dimensional, then Theorem 8.23, it will be isomorphic
to Fk for some k ∈ N. Using the connection between linear maps and matrices allows us to
completely answer this question in the case where V and W are finite dimensional.

Proposition 9.9. Let V and W be vector spaces over F and dimV = n, dimW = m. Then
dimL(V,W ) = m× n. We therefore have that L(V,W ) ∼= Fm×n.

Proof. Let A and B be bases for V and W respectively. From our earlier work, we have that for
each f ∈ L(V,W ) there exists a unique matrix Af := MBA(f) ∈Mm,n(F) that represents f . This
allows us to define a bijection Ψ : L(V,W )→ Mm,n(F), f 7→ Af . From direct computation26, we
have that Af+g = Af +Ag and Aλf = λAf . Thus

Ψ(f + g) = Ψ(f) + Ψ(g) and Ψ(λf) = λΨ(f)

meaning Ψ is linear, and so an isomorphism. Hence L(V,W ) ∼= Mm,n(F). In Example 8.24(i) we
showed that dimMm,n(F) = m × n. Another (somewhat similar) approach would be to find the
dimension of L(V,W ) in order to conclude the isomorphism. �

We end by extending some of the ideas from examples introduced in this section.

Example 9.10. Examples (iii) and (iv) are not examinable, but included for interest.

(i) Let U be a subset of Mm,n(F) that is closed under addition and also scalar multiplication
by F. Then U is a subspace of Mm,n(F), and dimU ∈ {0, . . . ,m× n}.

(ii) Let S = {1, . . . , n} and W be a vector space over F of dimension m. Then, extending
Example 9.7(i), dimF (S,W ) = n×m. Thus, given a vector space V over F of dimension
n, we have that L(V,W ) ∼= F (S,W ).

(iii) As a more involved example, we find the cardinality of F (R,R). A function f from R to R
can be interpretted as the set {(r, f(r)) : r ∈ R}. Each of these are elements of P (R×R),
where P (S) denotes the power set of S. This observation, together with |R × R| = |R|,
implies that |F (R,R)| ≤ |P (R × R)| = |P (R)| = 2|R|. For a lower bound, consider the

26That (Af +Ag)(x) = Af (x) +Ag(x) = f(x) + g(x) = (f + g)(x) and λAf (x) = λf(x) = (λf)(x) for all x ∈ V .
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functions {fS : S ⊆ R} defined by fS(x) = 1 if x ∈ S and fS(x) = 0 if x 6∈ S. Thus
|F (R,R)| ≥ |{fS : S ⊆ R}| = |P (R)|. Hence |F (R,R)| = 2|R|. An extra argument27

shows that dim(F (R,R)) = 2|R|.
(iv) Finally we compare C0(R,R), the vector space of continuous functions from R→ R, with

F (Q,R). There is a neat way to see that these are isomorphic. Take f ∈ F (Q,R). Then
f is uniquely determined by its outputs f(q) across all q ∈ Q. In the same way, once
a function g ∈ C0(R,R) is defined on Q, its outputs are known for all r ∈ R (which is
not an obvious step, but follows from the definition of continuity). Furthermore, for any
f ∈ F (Q,R) we can find a g ∈ C0(R,R) such that f(x) = g(x) for all x ∈ Q. We can
use this to define a bijection between F (Q,R) and C0(R,R), and check this is a linear
function. In this case |F (Q,R)| = 2|N| = |R|, meaning the argument in the footnote
cannot be used to determine dimF (Q,R). We can apply this argument less directly,
however. Take F (Q,Q) as a vector space over Q, and let S be a basis. Then |S| > |N|
and S is linearly independent over Q. Thus, for any n ∈ N and s1, . . . , sn ∈ S, we have
that a1s1 + . . . + ansn = 0 has only the solution a1 = . . . = an = 0 when a1, . . . , an
can be chosen from Q. This can be written as an equation involving M , a matrix with
columns s1, . . . , sn, applied to (a1, . . . , an) ∈ Qn with output 0. By Remark 3.13, we
have det(M) 6= 0. Thus, with b1, . . . , bn ∈ R, the only solution to b1s1 + . . . + bnsn = 0
is b1 = . . . = bn = 0. Hence S is linearly independent over R, and we have a set of
cardinality |S| > |N|. Applying Theorem 7.13 in the infinite dimensional setting, we have
that |N| < dim(F (Q,R)) ≤ 2|N|. If we believe the Continuum Hypothesis, then we have
uniquely determined dim(F (Q,R)).

9.1. Revisiting concepts using F (R,R) and F (R,C). We look back at key concepts using
these two examples. Unless stated, we will consider F (R,R) as a vector space over R and F (R,C)
as over C. Recall that given f, g ∈ F (R,C), we have f = g if and only if f(x) = g(x) for all x ∈ R.

Example 9.11. We start with linear dependence/independence.

(i) Let S = {cosx, sinx, eix} ⊂ F (R,C). Then by eix = cosx + i sinx, the set S is linearly
dependent.

(ii) The smaller set S = {cosx, sinx} is linearly independent: if λ1 cosx+ λ2 sinx = 0 for all
x ∈ R, then for x = 0 we get λ1 = 0 and for x = π/2 we get λ2 = 0.

Example 9.12. We can check a subset is a subspace with the subspace test.

(i) If F (R,C) is a vector space over R, then F (R,R) is a subspace of F (R,C).
(ii) The sets P(R) and P(C) of polynomials with real or complex coefficients are subspaces of

F (R,R) and F (R,C) respectively. and it is closed under addition and scalar multiplication,
hence it is a vector space. We further often just write PN , with some F in mind.

(iii) We have that U = {f : R→ C ; f(0) = 0} ⊂ F (R,C) is a subspace.
(iv) The set PF (R,C) := {f ∈ F (R,C) ; f(x+1) = f(x) for all x ∈ R} is the set of all periodic

functions with period 1 on R. This set is closed under addition and multiplication by
scalars, and hence is a vector space.

(v) The set C0(R,R), defined as the set of continuous functions f : R → R is a subset of
F (R,R) which is closed under addition and multiplication by scalars. Similarly

Ck(R,R) :=

{
f ∈ C0(R,R) :

dmf

dxm
∈ C0(R,R) for 1 ≤ m ≤ k

}
is a vector space. Indeed, this follows from well-known theorems about the limit and
derivative of the sum of two functions or a scalar multiple of a function.

(vi) The set of bounded real functions Cb(R,R) ⊂ C(R,R), defined by f ∈ Cb(R,R) if there
exists a Cf > 0 such that |f(x)| ≤ Cf for all x ∈ R, is a vector space.

27For any subset S, linear combinations in S with coefficients from R can be thought of as finite sequences
in S × R, i.e., in bijection with a subset of (S × R) × N. Thus no set S with |S| < 2|R| can span F (R,R), since

|spanS| ≤ |(S × R)× N| = |S × R| < 2|R| = |F (R,R)|.
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Example 9.13. We now see examples similar to the above and important in Fourier Analysis.

(i) Almost periodic functions AP := span(SR), where SR := {eiωx : ω ∈ R} ⊂ F (R,C).
(ii) The subspace of AP given by span(SZ), where SZ := {e2πnx : n ∈ Z} ⊂ F (R,C).
(iii) The subspace of AP and of span(SZ) consisting of trigonometric polynomials, for N ∈ N,

given by span(TN ) where TN := {e2πinx ; n = −N,−N + 1, . . . ,−1, 0, 1, . . . , N − 1, N}.
Each of the sets TN , SZ, and SR can also be shown to be linearly independent. Hence TN is a
subspace of dimension 2N + 1, and both AP and span(SZ) are infinite dimensional.

We can also determine whether a set is a basis in the same way we did for subsets of Cn.

Example 9.14. Let spanT2 := {
∑
|n|≤2 ane2πinx ; an ∈ C} be the space (over C) of trigonometric

polynomials of order 2. Then the set A = {e−2πi2x, e−2πix, 1, e2πix, e2πi2x} is a basis of T2. Now
we can expand e2πinx = cos(2πnx) + i sin(2πnx), and so we expect that

B = {cos(2π2x), sin(2π2x), cos(2πx), sin(2πx), 1}
is as well a basis for T2. The corresponding matrix is given by

CBA =


1 0 0 0 1
−i 0 0 0 i
0 1 0 1 0
0 −i 0 i 0
0 0 1 0 0


for which we compute that detCBA = −4. Thus CBA is nonsingular and B is indeed a basis.

Example 9.15. The notions of eigenvalue and eigenvector also apply to spaces of functions.

(i) Let D denote the derivative map on C1(R,R), so that D(f) := f ′. Then f(x) = eλx is an
eigenvector for D with corresponding eigenvalue λ.

(ii) Similarly, for the same map D as above, every element in SR is an eigenvector in AP .
(iii) For P(R) over R, we can consider the derivative function D : P(R) → P(R) and also

A : P(R) → P(R), p(x) 7→ xp(x). Setting T := A ◦ D leads to each element from
{x, x2, x3, . . .} being an eigenvector (each with a different eigenvalue).

Example 9.16. The image and kernel are defined for any linear map.

(i) For D above, on C1(R,R), we have that kerD = P0 and ImD = C0(R,R).
(ii) For the shift map T1 : F (R,C)→ F (R,C), f(x) 7→ f(x+ 1) and I : f(x) 7→ f(x), we have

that ker(T1 − I) = PF (R,C) the space of periodic functions with period 1.
(iii) For the evaluation map δ1 : F (R,C) → C, f(x) 7→ f(1), we have ker δ1 = {f : f(1) = 0}

and Im δ1 = C.

Example 9.17. We also have new examples of inner products.

(i) Let V = Mn(R) over R. Then 〈A,B〉 := tr(AtB) defines an inner product on V . In one
way this is not new: we sum, over j, the dot products of rows of A and columns of B, and

so we could equally well view A,B as vectors in Rn2

, listing, column after column, their
entries as a one-dimensional array.

(ii) On C[a, b] := {f : [a, b] → C : f is continuous} we have an inner product given by

〈f, g〉 =
∫ b
a
f̄(x)g(x) dx. We also have an associated norm. The key motivation for these

comes from quantum mechanics.

Example 9.18. With an inner product we can then find an orthonormal basis.

(i) For our inner product above on Mn(R), an ONB is really just one in Rn2

. Thus the basis
seen before consisting of matrices with exactly one (i, j) such that aij = 1 and all other
entries zero defines an ONB (and corresponds to the standard basis {e1, . . . , en2}).

(ii) Let V = C[0, 1] and ek(x) := e2πix for k ∈ Z. Then for k 6= l and k, l ∈ Z we get

〈ek, el〉 =

∫ 1

0

e2πi(l−k)x dx =

[
1

2πi(l − k)
e2πi(l−k)x

]1
0

= 0

so ek ⊥ el if k 6= l. Hence the above sets SZ and TN , where N ∈ N, are actually ONB.
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(iii) One also has that {1,
√

2 cosx,
√

2 sinx, . . . ,
√

2 cos kx,
√

2 sin kx} is an ONB for spanTN .

When we have an ONB, it is then natural to consider orthogonal projections. Recall these are
linear functions P which are projections (meaning P 2 = P ) that are hermitian (meaning P ∗ = P ).

Theorem 9.19. Let V be an inner product space, P : V → V an orthogonal projection and
W = ImP . Then, for each w ∈W , we have that

‖v − w‖ ≥ ‖v − Pv‖.

Proof. We apply Theorem 4.14 by noting Pv ∈W and v − Pv ∈W⊥:

‖v − Pv‖2 ≤ ‖v − Pv‖2 + ‖Pv − w‖2 = ‖v − Pv + Pv − w‖2 = ‖v − w‖2.
Thus, because this applies to every w ∈W , the result holds. �

Thus Pv ∈W is the vector in W closest to v and the distance from v to W is actually ‖v−Pv‖.
We end with a motivation for an ONB in the infinite dimensional setting. Let V = C[0, 1], the
space of continuous functions on [0, 1], and recall the inner product from Example 9.18(ii). With
WN = spanTN and ek(x) := e2πix for k ∈ Z, we have an orthogonal projection onto WN given by

PN (f)(x) :=

N∑
k=−N

〈ek, f〉ek(x).

Theorem 9.19 tells us that for any function f(x) ∈ F (R,C) the trigonometric polynomial

fN (x) := PN (f)(x) =

N∑
k=−N

〈ek, f〉ek(x), with 〈ek, f〉 =

∫ 1

0

f(x)e−2πikx dx

gives the best approximation of f in the sense that ‖f − fN‖ ≤ ‖f − g‖ for all g ∈WN . This is
called a finite Fourier series of f . In Fourier Analysis one shows that if N →∞, then ‖f−fN‖ → 0.
Let us now touch on the subject of Functional Analysis. When we introduced the general notion
of a basis we required that every vector can be written as a linear combination of a finite number
of basis vectors. The reason for this was that, for a general vector space, we cannot define an
infinite sum of vectors as we have no notion of convergence. But with an inner product and the
associated norm ‖v‖, the situation is different. Given infinite sequences (vn)n∈N and (λn)n∈N, we
say that the sum

∑∞
i=1 λivi converges to v, denoted v =

∑∞
i=1 λivi, if

lim
N→∞

∥∥∥∥v − N∑
i=1

λivi

∥∥∥∥ = 0.

We can then introduce a different notion of basis, a Hilbert space basis, which is an orthonormal
set of vectors {v1, v2, . . .} such that every vector can be written as

v =

∞∑
i=1

〈vi, v〉vi.

Example 9.20. The set SZ = {en(x) : n ∈ Z} is a Hilbert space basis of C[0, 1]28. In this case
the sum f(x) =

∑
k∈Z〈ek, f〉ek(x) is called the Fourier series of f .

28. . . well, almost. We should take the completion of C[0, 1], which is L2[0, 1], but leave this for another day.
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