Network Analysis of the CRAN
Ecosystem

and Task View Classification

Dylan Dijk
Student ID: 1802183
Email: Dylan.Dijk@warwick.ac.uk
Supervised by Professor Ioannis Kosmidis

Report submitted in partial fulfillment of the requirements for
the degree of MMORSE at the University of Warwick

Department of Statistics
University of Warwick
Coventry, United Kingdom

May 2022

Abstract

The number of packages hosted on the Comprehensive R Archive Network (CRAN) has
grown very large since it was created. To help organise these packages CRAN introduced
Task Views which group together packages used for similar purposes. The infrastructure
of the development and maintenance of the CRAN Task Views moved to GitHub towards
the end of 2021. This move to GitHub made it possible to follow discussions between the
Task View maintainers and other members of the R community. This uncovered some of
the challenges that are encountered in the maintenance of the CRAN Task Views. Task
View editors need to make decisions on which Task Views to include whilst trying to
avoid any two Task Views being too similar. In this report we create a similarity measure
between Task Views and compare the results to decisions made by the Task View editors.
In addition, Task View maintainers need to select packages to add to their Task View. In
this report we use multinomial regression to build a multi-class classifier of packages to
Task Views. This can be used to provide recommendations for packages to Task Views.
On a hold-out test set the accuracy of the model is 80%.

Acknowledgements

I would like to say thank you to Professor Ioannis Kosmidis for his guidance, support and

feedback throughout the project.

Contents

1 Introduction
1.1 The Comprehensive R Archive Network
1.2 Package Directive and Author Collaboration Networks
1.3 cranly R Package
1.4 Task Views o
1.4.1 Description of the CRAN Task View Initiative
1.4.2 Transfer of the CRAN Task View Infrastructure to GitHub
1.4.3 Storing Task View Snapshots

1.5 Notation

2 Exploratory Analysis of the Task Views
2.1 AIm . e
2.2 Preliminary Analysis
2.2.1 CRAN on the 20" of February 2022
2.2.2 cranlogs R Package L.
2.2.3 CRAN on the 4" of April 2022
2.3 Connectivity of the Author Subnetworks

2.4 Influence of the Authors

3 Similarity of Task Views

3.2 Measuring Similarity of Task Views using Package Dependencies
3.2.1 Defining the Similarity Measure
3.2.2 Examining Resultso

3.2.3 Comparing Results to the Decisions Made by the CRAN Task View
Editorso

3.3 Enhancing the Similarity Measure with Task View Description Text

331 Aim

3.3.2 Method to Measure Text Similarity

3.3.3 Combining Similarity Measures

Task View Recommendations

4.2 Multinomial Logistic Regression

4.3 Model Fitting
431 Data
4.3.2 Features

4.3.3 Model Tuning

4.3.4 Model Accuracy and Recommendations

4.3.5 Feedback from Maintainers

Discussion and Conclusion

5.1 Similarity of Task Views . . .

5.2 Task View Recommendations

Bibliography

Appendix

Supplemental Material

32

32

33

36

38

38

38

41

41

41

42

44

45

46

46

47

48

51

56

1 Introduction

1.1 The Comprehensive R Archive Network

The Comprehensive R Archive Network (CRAN) is the central software repository for
the programming language R (R Core Team, 2020). CRAN contains up-to-date versions
of code and documentation for R. The content is stored in a network of servers around
the world, known as the CRAN Mirrors (see the CRAN homepage!, Section “What are

R and CRAN"), with each server containing identical information.

In addition, CRAN contains a package repository which stores packages that can be
installed to extend the functionalities of base R%. R packages are also hosted in other
repositories, such as: Bioconductor?, Omegahat*, R-Forge® and GitHub®. However, the
CRAN package repository is the main repository for R, with the packages stored there

being easily installed by users and tested daily on multiple systems.

The number of packages in CRAN has been growing exponentially over the last 10 years.
Currently, there are more than 18800 packages (an up to date figure is given at the top
of the CRAN package web page”) with contributions from over 27,000 authors.

In the rest of this introductory section we describe the data that is available surrounding
the packages hosted on CRAN. We then cover some of the tools we can use to extract and
analyse this data. We also introduce Task Views, which are groups of packages used for
similar purposes, and highlight some of the challenges that are faced by the Task View

editors and maintainers.

In Section 2 we present the results of an exploratory analysis of CRAN from two snapshots
which provides an overview of the data. In this section we also present some results of a

social network analysis using the CRAN collaborative network.

One of the challenges faced by CRAN Task View editors is to decide which Task Views to

include whilst making sure no two Task Views are too similar. Another common issue is

LCRAN mirrors: https://cran.r-project.org/ - section “What are R and CRAN”

2List of Base R packages: https://cran.r-project.org/doc/FAQ/R-FAQ.html#Add_
002don-packages—-in-R

3Bioconductor repository: https://master.bioconductor.org/install/

4Omegahat repository: http://www.omegahat.net/

®R-Forge repository: https://r-forge.r-project.org/

6GitHub: https://github.com/

"Current number of packages available in CRAN given at top of web page: https://cran.r-project.
org/web/packages/

https://cran.r-project.org/
https://cran.r-project.org/
https://cran.r-project.org/doc/FAQ/R-FAQ.html#Add_002don-packages-in-R
https://master.bioconductor.org/install/
http://www.omegahat.net/
https://r-forge.r-project.org/
https://github.com/
https://cran.r-project.org/web/packages/
https://cran.r-project.org/
https://cran.r-project.org/doc/FAQ/R-FAQ.html#Add_002don-packages-in-R
https://cran.r-project.org/doc/FAQ/R-FAQ.html#Add_002don-packages-in-R
https://master.bioconductor.org/install/
http://www.omegahat.net/
https://r-forge.r-project.org/
https://github.com/
https://cran.r-project.org/web/packages/
https://cran.r-project.org/web/packages/

Task Views not being properly maintained which then leads to them not having a sharp

focus.

In Section 3 we define a similarity measure for Task Views utilising the package depen-
dencies and the text data from the Task View web pages. After creating this similarity

measure, we compare the results to decisions made by the Task View maintainers.

The Task View maintainers need to decide which packages to include in their Task View.
They need to keep their Task View up to date as packages are archived and new packages
are released (see issue 5° by the Environmetrics Task View” maintainer). Due to the huge
number of packages that are in CRAN it is infeasible for a Task View maintainer to review
all of the available packages. Therefore, a model that would give a small selection of high

quality suggestions for the maintainer to then review would be useful.

In Section 4 we build a multi-class classifier using multinomial regression to classify R
packages to Task Views. We construct features using the data described in the previous

sections.

8Comment by the Environmetrics Task View maintainer in regards to keeping up to date with packages:
https://github.com/cran-task-views/Environmetrics/issues/5

9Environmetrics Task View web page: https://cran.r-project.org/web/views/Environmetrics.
html

https://github.com/cran-task-views/Environmetrics/issues/5
https://cran.r-project.org/web/views/Environmetrics.html
https://github.com/cran-task-views/Environmetrics/issues/5
https://cran.r-project.org/web/views/Environmetrics.html
https://cran.r-project.org/web/views/Environmetrics.html

1.2 Package Directive and Author Collaboration Networks

When developing a package, authors need to document precisely how their package utilises
or enhances existing packages. They must create a description file listing the packages
that theirs communicates with. Listing 1 on the next page shows part of the description

file for the lubridate R package (Grolemund and Wickham, 2011) as an example.

There are five possible types of relation between packages that can be given in the de-
scription file, and they are listed below (see, Writing R Extensions, Section 1.1.3'° for a

more detailed description on the different package dependencies):

1. Depends - Packages listed in this field will be loaded and attached before the
current package, therefore users will be able to access functions from these packages.
This field is also used to indicate dependency on a particular version of R, for

example Listing 1 shows lubridate depends on version 3.2 of R or higher.

2. Imports - These are packages that are loaded into memory but are not attached.
In addition to the description file a namespace file is then required to make sure the

correct functions are used by the functions within the package.

3. Linking to - Packages where the current package can use their code. For example

the package can use the C++ code written in someone else’s package.

4. Suggests - The package can be used with these packages but does not require them.

These packages might be needed for example to run tests and vignettes.

5. Enhances - Packages that can be extended by the current package. For example

by providing methods for classes from these packages.

The first three types of package dependencies are referred to as Hard Dependencies,
because any package listed in any of these fields need to be installed alongside the current
package. The last two types are called Soft Dependencies, as they are not required to

use the package.

Listing 1 shows a part of the description file for the lubridate R package (Grolemund and
Wickham, 2011). In this example there is a package listed in all five of the dependency
fields. Listing 1 shows just a selection of lines taken from the complete description file

which includes additional information such as the list of authors. The full description file

0Ppackage dependency documentation: https://cran.r-project.org/doc/manuals/r-release/
R-exts.html#Package-Dependencies

https://cran.r-project.org/doc/manuals/r-release/R-exts.html#Package-Dependencies
https://cran.r-project.org/doc/manuals/r-release/R-exts.html#Package-Dependencies
https://cran.r-project.org/doc/manuals/r-release/R-exts.html#Package-Dependencies

can be downloaded from the package web page!! hosted on CRAN, the package source

file is found under the downloads section.

Type: Package
Package: lubridate

3 Title: Make Dealing with Dates a Little Easier

5 Version: 1.8.0

Maintainer: Vitalie Spinu <spinuvit@gmail.com>

Depends: methods, R (>= 3.2)

Imports: generics

Suggests: covr, knitr, testthat (>= 2.1.0), vctrs (>= 0.3.0), rmarkdown
Enhances: chron, timeDate, tis, zoo

LinkingTo: cppll (>= 0.2.7)

Listing 1: Selected lines from the description text file for the lubridate R package. We are
only showing the main fields and the list of package dependencies. There are additional

fields that we have removed such as a description of the package.

The information provided in the description files for the packages is then used to help
generate the CRAN package web pages (see, Wickham and Bryan 2015, section 8.2'2).
We can see on the package web page!! how the information is displayed for the lubridate
R package (Grolemund and Wickham, 2011). The package web pages include additional
information that is not found in the description files, such as any Task Views that the

package is allocated to.

The ways that packages communicate with each other can then be represented as a net-
work, with edges denoting the type of relation between the nodes (the packages). Figure 1
shows the package directive network for the cranly R package (Kosmidis, 2019). The
package directive networks are directed networks, with the direction of an edge defining
which package “uses” another. For example, an imports edge from visnetwork (Almende

B.V. et al., 2021) to cranly means cranly imports the visnetwork package.

1 Jubridate package web page: https://cran.r-project.org/web/packages/lubridate/index.
html

12Section 8.2 from Wickham and Bryan (2015): https://r-pkgs.org/description.html#
description-title-description

https://cran.r-project.org/web/packages/lubridate/index.html
https://r-pkgs.org/description.html#description-title-description
https://cran.r-project.org/web/packages/lubridate/index.html
https://cran.r-project.org/web/packages/lubridate/index.html
https://cran.r-project.org/web/packages/lubridate/index.html
https://r-pkgs.org/description.html#description-title-description
https://r-pkgs.org/description.html#description-title-description

Neighbouring packages

is imported by

colorspace
is dependency of

rmarkdown

is suggested by
knitr

eeeeeeee

s linked by visNetwork

ggplot2

RWsearch tm countrycode

Figure 1: The package directive network for the cranly R package. Click on the figure
to be sent to interactive version.

(Visit this web page!® to view interactive figures for this report)

In addition to the package directives, we can also look at the CRAN package data through
the perspective of the authors of the packages. We can view the collaboration between
R package developers as a social network, with nodes representing authors and edges
representing the packages that both authors worked on. Figure 2 shows the collaboration
network of Patrice Kiener who is the author of the RWsearch R package (Kiener, 2021),
can see from Figure 1 that RWsearch suggest the cranly R package.

Salsabila Makdi Jogsica Franco

Akshaj Verma
Delphine Dupuy

Pafrice |Kiener

Alexander Rossell Hayes
Christophe Dutang

Olivier Roustant Bertrand looss

Guillaume Damblin

Figure 2: The author collaboration network for Patrice Kiener (author of the RWsearch
R package).

13Web page for interactive figures for this report: https://dylandijk.github.io/Dissertation_
Figures/index.html

https://dylandijk.github.io/Dissertation_Figures/Figure1.html
https://dylandijk.github.io/Dissertation_Figures/Figure1.html
https://dylandijk.github.io/Dissertation_Figures/index.html
https://dylandijk.github.io/Dissertation_Figures/Figure2.html
https://dylandijk.github.io/Dissertation_Figures/index.html
https://dylandijk.github.io/Dissertation_Figures/index.html

1.3 cranly R Package

Before the package data can be analysed it must be extracted from CRAN. The metadata
for R packages can be downloaded from CRAN using the CRAN_package_db() function
from the tools R package (this is a base R? package, R Core Team 2020). This function
loads the data for of all packages listed on CRAN. Calling the function outputs a data
frame object containing most of the metadata found in the description files for all of the
current packages in the CRAN package repository (see, CRANtools help file!® part of the
tools R package help files'®). This object contains many character strings, and needs to

be cleaned in order to extract the information.

The cranly R package (Kosmidis, 2019) provides methods to clean this extracted data,
so you are left with data that can be easily interpreted and manipulated. The package
also offers methods to build both the package directives networks and collaboration net-
works using the information in the extracted data. The figures in the previous subsection

(Figure 1 and Figure 2) where made using cranly.

Using cranly, a year worth of daily snapshots of the CRAN ecosystem has been collected
by Ioannis Kosmidis. These snapshots started on the 11th of September 2019 and are

still being captured (there have been some breaks).

There are some small issues with the data, not all data is perfectly extracted from CRAN.
For example for the igraph R package (Csardi and Nepusz, 2006), the data extracted
by cranly (Kosmidis, 2019) says that this package has no authors. This is because the
authors have not been listed in the standard way on CRAN. Instead, they have linked to

a separate text file!” that breaks down the contribution of each author in further detail.

This problem exists for seven packages: igraph, AnaCoDa, My.stepwise, RMOA-
jars, boilerpipeR, git2r and paletteer. To overcome this we have used the maintainer

of the packages as the nominated author.

Another issue with the data is the inconsistency in which authors name themselves on
packages. For example there are cases where an author will include the initials for their
middle name for a certain package and then elsewhere they will not. Figure 3 gives an

example of an author using different variations of their name across packages in CRAN.

1ist of packages available in CRAN: https://cran.r-project.org/web/packages/available_
packages_by_name.html

I5CRANtools is a subset of functions from the tools R package.
CRANtools help file: https://stat.ethz.ch/R-manual/R-devel/library/tools/html/CRANtools.
html

6tools R package help files: https://stat.ethz.ch/R-manual/R-devel/library/tools/help/

17Text file provided in the author field on the igraph R package webpage: https://cran.r-project.
org/web/packages/igraph/AUTHORS

https://cran.r-project.org/doc/FAQ/R-FAQ.html#Add_002don-packages-in-R
https://cran.r-project.org/web/packages/available_packages_by_name.html
https://stat.ethz.ch/R-manual/R-devel/library/tools/html/CRANtools.html
https://stat.ethz.ch/R-manual/R-devel/library/tools/help/
https://cran.r-project.org/web/packages/igraph/AUTHORS
https://cran.r-project.org/web/packages/available_packages_by_name.html
https://cran.r-project.org/web/packages/available_packages_by_name.html
https://stat.ethz.ch/R-manual/R-devel/library/tools/html/CRANtools.html
https://stat.ethz.ch/R-manual/R-devel/library/tools/html/CRANtools.html
https://stat.ethz.ch/R-manual/R-devel/library/tools/help/
https://cran.r-project.org/web/packages/igraph/AUTHORS
https://cran.r-project.org/web/packages/igraph/AUTHORS

Nicholas|Johnson
Brian Riplay Ba\asubramanié'r! Narasimhan upgi@#i®8an Baron
\\ \ / e
Kurt Horniks, \ | / /Sha\'m Garbett
“ \ / /

7

,,»“"I;Gen Nowak

Holger Hoefling . T Hastie
G Chly E

\ e
// Brad Efron

Jonathan R Pallack \ | ! /
Reqne h Tay v 4

\ I ' —
| Friedrigh R fibshirani .7_,_,_,-——'-
N / . Michael J Seo

‘ ~" R Thshiani ™

L
Stephen Rei‘

Thi L \I
omas Lum
"*f\\\

Jun Li

Gil Chu

Johan Larsson

Eric Bair
Tirmo Stacker— StephamMilborow

Jonas Wallin

< ~
S N -

amﬁ\a Wm,e\n . NG Jonathan Taylor
Gareth Jame,s/

\\\\\ Evan Patterson
\,
N
Alan Miller~. [\ N
S /o \ N Amg' Kapp
Junyang Gian | | Jean-Eudles Dazar

James Yang / \
N £ | El | Cand
Ewout van dep-Berg mmanuef Can “Rkarsh Goyal

|
Malgorzata BogéHiara Sabatti
Weijie Su

Jakub Kata
Joshua Loftus

Jelena Markovic

Figure 3: Author network for Robert Tibshirani (author of the glmnet R package). The
figure shows that the package data extracted from CRAN represents these variations in
names as individual authors.

In addition to cranly, another useful resource to observe the evolution of CRAN is the
Microsoft R Application Network (MRAN!®). MRAN hosts daily snapshots of the CRAN
R packages and R releases as far back as the 17th of September 2014. These snapshot are
taken at precisely midnight UTC using the checkpoint-server! which is the backend
of the checkpoint R package (see the documentation® describing the workflow MRAN
uses to capture the snapshots). The snapshots stored by Ioannis Kosmidis using cranly
are taken between 15:00 and 17:00 UTC therefore there can be slight differences with the
information stored by MRAN. The MRAN web page also has a CRAN Time Machine®!

8Microsoft R Application Network: https://mran.microsoft.com/

9GitHub repository for the checkpoint-server: https://github.com/RevolutionAnalytics/
checkpoint-server

2OMRAN snapshots workflow: https://mran.microsoft.com/documents/rro/reproducibility#
snapshots

2LCRAN Time Machine: https://mran.microsoft.com/timemachine

10

https://dylandijk.github.io/Dissertation_Figures/Figure3.html
https://mran.microsoft.com/
https://github.com/RevolutionAnalytics/checkpoint-server
https://mran.microsoft.com/documents/rro/reproducibility#snapshots
https://mran.microsoft.com/timemachine
https://mran.microsoft.com/
https://github.com/RevolutionAnalytics/checkpoint-server
https://github.com/RevolutionAnalytics/checkpoint-server
https://mran.microsoft.com/documents/rro/reproducibility#snapshots
https://mran.microsoft.com/documents/rro/reproducibility#snapshots
https://mran.microsoft.com/timemachine

web application that allows you to browse easily through the daily snapshots.

1.4 Task Views
1.4.1 Description of the CRAN Task View Initiative

The CRAN package ecosystem being as large as it is, motivates the need to organise
the packages so that users can find the package they need. The strategy that CRAN
is implementing in order to solve this problem, is through the CRAN Task Views?2.
These are groups of packages organised in terms of relevance for tasks in a certain topic.
For example the lubridate R package (Grolemund and Wickham, 2011) belongs to the

ReproducibleResearch Task View?? and also the TimeSeries Task View?? .

The individual Task Views are maintained by volunteers, and the Task View management
is overseen by the CRAN Task View editors (Achim Zeileis, Roger Bivand, Dirk Eddel-
buettel, Rocio Joo, Nathalie Vialaneix and David Meyer). The aim of the Task Views is
to provide guidance and they are not meant to endorse the “best” packages for a given
task. The views are intended to have a sharp focus so that it is sufficiently clear which
packages should be included or excluded (see, the CRAN Task View Initiative GitHub
repository README file?).

1.4.2 Transfer of the CRAN Task View Infrastructure to GitHub

Towards the end of 2021, the CRAN Task View editors started to transfer the infras-
tructure of the development and maintenance of CRAN Task Views from R-Forge to
GitHub?-2". During this process they converted XML files, that created the web pages
for each of the Task Views, into Markdown files. For example the TimeSeries Task View
repository on GitHub contains a Markdown file?® that generates the web page for the
TimeSeries Task View?*. These source files were originally stored in R-Forge, which is a

central platform for the development of R packages.

2ZCRAN Task Views: https://cran.r-project.org/web/views/

ZReproducibleResearch Task View web page: https://cran.r-project.org/web/views/
ReproducibleResearch.html

24TimeSeries Task View web page: https://cran.r-project.org/web/views/TimeSeries.html

CRAN Task View Initiative GitHub repository README file: https://github.com/
cran-task-views/ctv#cran-task-view-initiative-

26R-Forge CRAN Task Views home page: https://ctv.r-forge.r-project.org/index.html

2"Link to change-log in R-Forge: https://ctv.r-forge.r-project.org/news/index.html#
ctv-0-9-0-2021-12-14

Z8Markdown file that generates the TimeSeries web page: https://github.com/cran-task-views/
TimeSeries/blob/main/TimeSeries.md

11

https://cran.r-project.org/web/views/
https://cran.r-project.org/web/views/ReproducibleResearch.html
https://cran.r-project.org/web/views/TimeSeries.html
https://github.com/cran-task-views/ctv#cran-task-view-initiative-
https://github.com/cran-task-views/TimeSeries/blob/main/TimeSeries.md
https://cran.r-project.org/web/views/TimeSeries.html
https://cran.r-project.org/web/views/
https://cran.r-project.org/web/views/ReproducibleResearch.html
https://cran.r-project.org/web/views/ReproducibleResearch.html
https://cran.r-project.org/web/views/TimeSeries.html
https://github.com/cran-task-views/ctv#cran-task-view-initiative-
https://github.com/cran-task-views/ctv#cran-task-view-initiative-
 https://ctv.r-forge.r-project.org/index.html
https://ctv.r-forge.r-project.org/news/index.html#ctv-0-9-0-2021-12-14
https://ctv.r-forge.r-project.org/news/index.html#ctv-0-9-0-2021-12-14
https://github.com/cran-task-views/TimeSeries/blob/main/TimeSeries.md
https://github.com/cran-task-views/TimeSeries/blob/main/TimeSeries.md

By the end of January 2022 the conversions were completed and the Markdown files were
placed into individual repositories for each Task View, within the CRAN Task Views

GitHub account?

. All of the repositories were not made immediately public, as main-
tainers were still making amendments to the files. The CRAN Task Views account also

contains the ctv3® repository.

During the transfer process a few Task Views were retired and were archived in R-Forge.
For example, the Graphics Task View was removed as it was thought to be too broad too
be useful and had not been maintained for a while. The transition to GitHub was then
finalised and made public on the 25th of March 2022 (see the 92°¢ commit® on the ctv
GitHub repository). At this date there were 36 Task Views in total, compared to the 4th
of November 2021 where there were 41 Task Views.

The updated Task View source files were then updated onto the CRAN Task Views?? web
page on the 4™ of April 2022 (see the announcement by Achim Zeileis via this thread??
on Twitter). Once the new CRAN Task View workflow had been launched the Task

t33

View editors then started to look at new Task View proposals (see this comment®® on a

discussion about the proposal of a SportsAnalytics Task View).

1.4.3 Storing Task View Snapshots

During my project I have followed this transition, and paid attention to the issues raised
by Task View editors on the repository. The problems discussed by the editors can be

found on the open and closed sections within the issues tab3* of the ctv GitHub account.

Additionally, T have stored Task View snapshots as different Task Views were removed
using the tvdb_down() function from the RWsearch R package (Kiener, 2021). The
tvdb_down () function downloads information of the Task Views at the current day. This
data is stored as a list of length given by the number of Task Views at that time of
running the function. The package also provides other functions that allow us to extract
information from the snapshots. The tvdb_vec () function lists the names of all the Task

Views in the loaded snapshot, and tvdb_pkgs () takes a Task View name as an argument

29CRAN Task Views GitHub account: https://github.com/cran-task-views
30CRAN Task View (ctv) Initiative GitHub repository: https://github.com/cran-task-views/ctv

31 Announcement of completion of transfer to GitHub from R-Forge: https://github.com/
cran-task-views/ctv/commit/bda537c5d496ad7ee042f77£07a4d1a90d63ala’?

32 Announcement of relaunch of CRAN Task Views on the 4" of April: https://twitter.com/
AchimZeileis/status/1510945091980038145

33SportsAnalytics Task View proposal: https://github.com/cran-task-views/ctv/issues/11#
issuecomment-1094135596

34ctv repository within the CRAN Task Views GitHub account - Issues tab: https://github.com/
cran-task-views/ctv/issues

12

https://github.com/cran-task-views
https://github.com/cran-task-views
https://github.com/cran-task-views/ctv
https://github.com/cran-task-views/ctv/commit/bda537c5d496ad7ee042f77f07a4d1a90d63a1a7
https://cran.r-project.org/web/views/
https://twitter.com/AchimZeileis/status/1510945091980038145
https://github.com/cran-task-views/ctv/issues/11#issuecomment-1094135596
https://github.com/cran-task-views/ctv/issues
https://github.com/cran-task-views
https://github.com/cran-task-views/ctv
https://github.com/cran-task-views/ctv/commit/bda537c5d496ad7ee042f77f07a4d1a90d63a1a7
https://github.com/cran-task-views/ctv/commit/bda537c5d496ad7ee042f77f07a4d1a90d63a1a7
https://twitter.com/AchimZeileis/status/1510945091980038145
https://twitter.com/AchimZeileis/status/1510945091980038145
https://github.com/cran-task-views/ctv/issues/11#issuecomment-1094135596
https://github.com/cran-task-views/ctv/issues/11#issuecomment-1094135596
 https://github.com/cran-task-views/ctv/issues
 https://github.com/cran-task-views/ctv/issues

and outputs a character vector of all the package assigned to that Task View.

As well as storing snapshots, the CRAN Time Machine?! described at the end of Sec-
tion 1.3 is useful to follow how the Task Views have changed over time. Using this
application we can look at the evolution of the Task Views by selecting a date and then

clicking on the Task Views tab on the CRAN Time Machine viewing window.

For the rest of this report we use two snapshots of CRAN and its Task Views. We use a
snapshot taken on the 20" of February 2022 before the transfer process was completed.
Then a snapshot taken on the 4 of April 2022 when the new workflow was launched. In

the Appendix, Table 3 and Table 4 give summary statistics of each snapshot.

In Section 2, we present results from an exploratory data analysis using these two snap-
shots. We then compute network statistics of the Task View author subnetworks using
the snapshot taken on the 4" of April 2022.

In Section 3 we create a similarity measure between Task Views using the 20th of February
2022 snapshot and compare this measure with the decisions made by the CRAN Task View
editors during the transfer process. We then create a final similarity measure with the 4"
of April 2022 snapshot, when the transfer of the Task View management to GitHub was
completed. In Section 4 we train the model using the snapshot taken on the 4" of April
2022.

1.5 Notation

We now introduce mathematical notation to describe the package directive networks and
the subnetworks formed by the Task Views.

As discussed in Section 1.2, the packages hosted on CRAN can be viewed as a network.
The nodes of this network represent the packages, the edges between them the dependen-
cies (see Figure 1 for example). We also covered the different package dependency types,
and for the rest of this report we just use the Hard Dependencies between packages

and ignore the Soft Dependencies.

We denote the package dependency network of packages hosted on CRAN by the directed
graph object G(V, E), which is defined by the node set V' and the directed edge set E.
We let N denote the number of nodes in set V' and L the number of directed edges in E.

The set E has directed edges as elements, where a directed edge e, € E is defined as an

ordered pair (v;,v;) with v;,v; € V. For the directed edges, we refer to the first element

13

https://mran.microsoft.com/timemachine

of the pair as the tail and the second element as the head of the edge.

The set of edges E can be encoded into an adjacency matrix A, with elements A;; = 1 if
there exists an edge from node i to node 7, and zero if not. It follows that A has dimension

N x N. For directed networks the adjacency matrix can be asymmetric.

Now in order to describe the Task View subnetworks, we let V, denote the set of nodes
(CRAN packages) belonging to Task View k and let K be the number of Task Views.
Each Task View consists of packages that are hosted on CRAN, and therefore V,, C V
Vke{l,...,K}.

We define the subnetwork for Task View £ as the induced subgraph of G generated by the
node set Vi. An induced subgraph of a graph G generated by a node set W, is defined
as the Graph whose node set is W and the edge set is all the edges in F that have both
their tail and head in W.

In addition, in Section 1.2 we also mentioned that the author data of the packages hosted
on CRAN can be viewed as a network (see Figure 2 for example). The nodes of this
network represent the authors, and the edges between them the collaboration of the

authors.

We denote the author collaboration network by the undirected graph object G'(V’, E’),
which is defined by the node set V' and the edge set E’. E’ is an undirected edge set,

Luh) with o, 0, € V7.

, , .
where an edge ¢) € £’ is an unordered pair (v}, v i Uj

Similar to the package directive notation, we let V) denote the set of authors who devel-
oped a package (hosted on CRAN) that is assigned to Task View k. V' is the set of all
authors who have developed a package in CRAN and therefore V) C V' Vk € {1,..., K}.

I define the author collaboration network for Task View k, to be the induced subgraph
of G' generated by node set V. It is important to note that by this construction the
subgraph can include edges that represent packages that are not allocated to Task View
k.

14

2 Exploratory Analysis of the Task Views

2.1 Aim

In this section we present the results of an exploratory data analysis that provides an
overview of the data. This includes a preliminary analysis and then a network analysis of

the collaborative author networks formed within the Task Views.

A social network is defined as is a collection of people, each of whom is acquainted with
some subset of the others (see M. E. J. Newman, 2001b). Therefore the collaboration
network of package developers is a social network. In the literature there are many case
studies analysing scientific collaboration networks (see M. E. J. Newman, 2001b; M. E. J.
Newman, 2001a; Bella, Gandullia, and Preti, 2021). They explore ideas such as the
connectivity of the networks and the influence of particular nodes in the network, we take

these ideas and implement them onto the CRAN collaboration network.

From the analysis, we can discover the influential package developers according to the
statistics we calculate. Throughout the analysis, we define the different network statistics

and display the results.

2.2 Preliminary Analysis
2.2.1 CRAN on the 20*" of February 2022

Before analysing the structure of the networks, it is good to get an overview of the
Task Views. We use a snapshot taken on the 20" of February 2022 before the transfer
was completed, and then a snapshot taken on the 4" of April 2022 when the transfer
was completed and uploaded on to CRAN. In the Appendix we provide tables with the

results.

On the 20 of February 2022 date there were 18966 packages hosted on CRAN (see Table
3). 3425 of these packages were assigned to at least one Task View, and hence there were
15541 packages that had no assigned Task View. Figure 4 shows the number of packages
in each of the 40 Task Views, and the number of authors who developed at least one
package in each of the Task Views. The values shown in Figure 4 are provided in Table
5 (the 20 of February 2022 columns), in the Appendix.

If we look at the entire CRAN network, the median number of packages developed by

each author was 1. This varies however if we look at authors within Task Views, for

15

example, the TeachingStatistics Task View?® had a median of 4. The distributions of the
number of packages developed by authors is very positively skewed with most Task Views
consisting of a small group of authors that have developed a large amount of packages.
In the TeachingStatistics Task View® there are 6 authors that have developed over 50
packages in CRAN.

800

600 1

(]
3 004 [Authors
[
> B Packages
200 4
0@mcuwmcam:rsm@*-'u)*-'mw::m)mm—cmhmmmmmcmmzm—mm—mw
ESS8 8L SESE2ss2288 e g8 gegoeoccsLfossge
PS80 E0C38EEL 2855828235532 588888c88s23¢
E-Ewﬂgw‘“mgmn:<—5>~ERo-9*-ESE-E°-G:g SE>5 S 0Sne3d 320
SSERSSEE0F f283583258E5 505 8ERE] sE%g¢
§S8gosogus Eo DEZIETLSE c®Ss®c o B ©0E
SER 5§t G8°E58 £226% 2858%5 8 2= S8 sF
o = W FOE S 0] 5 E o Rt < ELUE Iﬁ '_5 25 2
=g 5 Sgu 8 g&8» & o &] ¢ 3¢
2
& 2L = [~ 5} g = o
S5 w 5 £ g
T fa}
[< z & o4
g 5
© =
z I
Task Views

Figure 4: Number of packages and authors in each of the Task Views (20" of February
2022).

If we look at the average number of authors that worked on the development of packages,
this is again very skewed with the median number of authors being 2 for the whole CRAN
network. This is mostly true for the number of authors of Task View packages, with the
medians also being equal to 2. An example of some packages that have a large number
of developers are: mlpack from the MachineLearning Task View3® with 133 authors, and
knitr from the Reproducible Research Task View?® with 100 authors.

At this date we can also look at the overlap of packages in the different Task Views.
Figure 5 shows the proportion of packages that exist in both Task Views.

35TeachingStatistics Task View web page: https://cran.r-project.org/web/views/
TeachingStatistics.html
36MachineLearning Task View web page: https://cran.r-project.org/web/views/

MachinelLearning.html

16

https://cran.r-project.org/web/views/TeachingStatistics.html
https://cran.r-project.org/web/views/TeachingStatistics.html
https://cran.r-project.org/web/views/MachineLearning.html
https://cran.r-project.org/web/views/ReproducibleResearch.html
https://cran.r-project.org/web/views/TeachingStatistics.html
https://cran.r-project.org/web/views/TeachingStatistics.html
https://cran.r-project.org/web/views/MachineLearning.html
https://cran.r-project.org/web/views/MachineLearning.html

Figure 5: (z,y) element is the number of packages in both Task View x and y divided by
the number of packages in task view y (20'" of February 2022).

Table 1 shows the the top five pairs of packages with highest overlap values. We can see
that there is a very high proportion (73.3%) of packages that belong to the Tracking Task
View®” that also belong to the SpatioTemporal Task View:.

Top 5 pairs with largest overlap proportions

x | SpatioTemporal | Distributions Tracking Econometrics Bayesian
y | Tracking ExtremeValue | SpatioTemporal | SocialSciences | GraphicalModels
0.733 0.625 0.388 0.35 0.313

Table 1: Top 5 largest overlap proportions. Proportions are calculated in same way as

Figure 5 with the Task View in top row and y Task View in bottom row.

2.2.2 cranlogs R Package

Additionally to getting an overview on the number of packages and authors, we can
use the cranlogs R package (Csardi, 2019) to get an idea of how frequently packages are
downloaded by users. The cranlogs R package provides an API to the database of CRAN

3"Tracking Task View web page: https://cran.r-project.org/web/views/Tracking.html
38SpatioTemporal ~ Task View web page: https://cran.r-project.org/web/views/
SpatioTemporal.html

17

https://dylandijk.github.io/Dissertation_Figures/Figure5.html
https://cran.r-project.org/web/views/Tracking.html
https://cran.r-project.org/web/views/Tracking.html
https://cran.r-project.org/web/views/SpatioTemporal.html
https://cran.r-project.org/web/views/Tracking.html
https://cran.r-project.org/web/views/SpatioTemporal.html
https://cran.r-project.org/web/views/SpatioTemporal.html

package download counts from the RStudio CRAN mirror (one of the mirror servers in
CRAN).

110000

100000

90000

80000

70000

60000

50000

40000

30000

Number of Downloads in last month
divide by number of packages

20000

10000

04

Cluster

ChemPhys

ClinicalTrials
Spatial

Pharmacokinetics
Hydrology
Medicallmaging
Tracking

MetaAnalysis
FunctionalData
ExperimentalDesign
ExtremeValue
Genetics
DifferentialEquations
Distributions

Survival
Psychometrics
Bayesian

TimeSeries
GraphicalModels
OfficialStatistics
MissingData

Robust

Optimization
MachineLearning
NaturalLanguageProcessing
Phylogenetics

Finance
NumericalMathematics
HighPerformanceComputing
Econometrics
Environmetrics
WebTechnologies
SpatioTemporal
SocialSciences
Multivariate
ReproducibleResearch
TeachingStatistics
Databases
ModelDeployment

Task Views

Figure 6: Number of downloads of packages belonging to each Task from the 20%" of
January 2022 to the 20" of February 2022 View, divided by the number of packages in
each Task View (20 of February 2022).

Using cranlogs we can uncover which Task Views are most popular, Figure 6 shows that
the ModelDeployment?® and Databases Task View?? were the most popular according to

monthly downloads.

39ModelDeployment Task View web page: https://cran.r-project.org/web/vieus/
ModelDeployment.html
40Databases Task View web page: https://cran.r-project.org/web/views/Databases.html

18

https://cran.r-project.org/web/views/ModelDeployment.html
https://cran.r-project.org/web/views/Databases.html
https://cran.r-project.org/web/views/ModelDeployment.html
https://cran.r-project.org/web/views/ModelDeployment.html
https://cran.r-project.org/web/views/Databases.html

2.2.3 CRAN on the 4" of April 2022

At this date there were 36 Task Views in comparison to the 40 on the 20" of February (see

Table 4). However the number of packages that were assigned to a Task View increased

by 91 packages.

The four Task Views that were removed are: Genetics, Multivariate, Phylogenetics
and SocialSciences (these are highlighted in red in Table 5). The values given in Figure 4

and Figure 6, for the Task Views that were not archived, do not change substantially

between the two dates.

WebTechnologies -]
Tracking -]

TimeSeries -|
TeachingStatistics -}
Survival -]
SpatioTemporal -]
Spatial -]

Robust-|
ReproducibleResearch -|
Psychometrics |
Pharmacokinetics -|
Optimization -|
OfficialStatistics -|
NumericalMathematics -]
NaturalLanguageProcessing -|
ModelDeployment |
MissingData -|
MetaAnalysis -|
Medicallmaging -
MachineLearning -|
Hydrology -|
HighPerformanceComputing -|
GraphicalModels |
FunctionalData -|
Finance -|
ExtremeValue -|
ExperimentalDesign -|
Environmetrics |
Econometrics |
Distributions -]
DifferentialEquations -|
Databases -|

Cluster |

ClinicalTrials |

ChemPhys |
Bayesian -
B e e e
I NaNale] mmmm T
g22292983%23
S35 2R00230 %3
33328 330ae 3
3228289385333
537 48253332°
%3 %33233%
@ maasSec
223326
c a9
2 2
o o
3 3
@

Figure 7: (x,y) element is the number
the number of packages in task view y

[BAIAINS -

|enneds |
sonsneIssulydesl -

Isnqoy |
|esodwajoneds -
Suppe.) |

£30j01pAH -
saifojouydagam -|

Suiuieatpuiydey -
eyeq8uissin_ |
yuawhojdagepoy |
uoneziwndo
sonaupjodeuLIeyd |
SOLPWOYIASY |
yoJeasaya|qpnpolday |
SaLASAWIL |

sisjeuyea |y |
SuissadoigadensueesnieN

ejegleuonduny -
sjppoedydels -]

Sunndwo)aduewiouadysiH -
SINSNEISIEPIO -]

SuiSewedipay |

sapewayiepedBWNN |

of packages in both task view x and y divided by
(40 of April 2022).

Comparing Figure 5 and Figure 7, we can see that in general there is a reduction in overlap

of packages between the two dates. For example the overlap between the Distributions®!

and Extremevalue Task View*? dropped from 63% to 41%.

41 Distributions Task View web page: https://cran.r-project.org/web/views/Distributions.

html

42Extremevalue Task View web page: https://cran.r-project.org/web/views/ExtremeValue.

html

19

https://dylandijk.github.io/Dissertation_Figures/Figure7.html
https://cran.r-project.org/web/views/Distributions.html
https://cran.r-project.org/web/views/ExtremeValue.html
https://cran.r-project.org/web/views/Distributions.html
https://cran.r-project.org/web/views/Distributions.html
https://cran.r-project.org/web/views/ExtremeValue.html
https://cran.r-project.org/web/views/ExtremeValue.html

2.3 Connectivity of the Author Subnetworks

In this subsection we look at how connected the authors of the Task Views are, by utilizing

the collaboration networks of the packages.

In Joo et al. (2020) the maintainers of the Tracking Task View highlighted the issue of
fragmentation in the package dependency network of their Task View. They made the
point that “many of these tools have proliferated in isolation, making it challenging for
users to select the most appropriate method for the question in hand”. They examined
the dependency structure of packages, which explicitly determines whether a package is

enhancing an existing package or if it has been developed in isolation.

Having a connected collaboration network, allows for information and ideas to pass easily
between developers. In regards to developing new packages this is very important, if
developers are aware of the work that is taking place it is less likely that redundant
packages will be developed. This could be the case however if the collaboration network
is very fragmented. Of course, having worked on a package together does not determine

perfectly the acquaintance between two people, and we are just using it here as a proxy.

One technique we can utilize to measure the connectedness of the Task View subnetworks
is by looking at the size of the largest component. We introduce some further notation

and define the largest component.

Definition 1. Path (Antiqueira and Fontoura Costa, 2009). A path p(i, j) from node i
to node j is denoted by a sequence of neighboring nodes: p(i,j) = (v1, V2, .., U, Ums1)
=1 Vie{l,...,m}. The length of the path p(i, j)
is w(p(i, 7)) = m, this is the the number of edges along the path.

where V1 = i, Um+1 =] and Avi,UiJrl

Definition 2. Cardinality. The cardinality of a set is the number of elements in that set.

Definition 3. Component. A component is a subset of the nodes of a network such that
there exists at least one path from each member of that subset to each other member, and
such that no other node in the network can be added to the subset while preserving this
property (definition from M. Newman, 2018, Section 6.12). The largest component is

the component with the largest cardinality.

The largest component is sometimes referred to as the giant component, however “giant
component” has a specific meaning in network theory and is not precisely synonymous

with “largest component.” (see M. Newman, 2018, Section 10.1 and 11.5).

We calculate the size of the largest components for the collaborative subnetworks of the

Task Views. As noted previously the edges of the author Task View subnetworks denote

20

packages that the adjacent authors both worked on, but we are not restricting these
packages to be assigned to the selected Task View (we define the induced subgraph in
Section 1.5). We want to analyse the “connectivity” of the authors, therefore it would

not make sense to restrict the edges.

==

&

Figure 8: Author network of authors who have published packages belonging to the Ex-
perimentalDesign Task View. This is the Task View with the smallest largest component
(see Definiton 3) as a proportion to the total number of authors.

Table 6 gives the largest components of the author networks for each Task View as a
proportion of the total number of authors. The mean proportion of the giant components
is 64% (with SD of 22%). The largest proportion belongs to the ModelDeployment Task
View® with a value of 95% and the minimum value belongs to the ExperimentalDesign
Task View*? with a value of 11%.

Figure 8 shows the author network for the ExperimentalDesign Task View?? (this figure
was made using the networkD3 R package (Allaire et al., 2017) within the modified

cranly plot function).

Another aspect of the author network to investigate is the average geodesic distance
between pairs of authors, this would give an idea of the “distance” between connected

authors. We define the geodesic distance in Definiton 4.

43ExperimentalDesign Task View web page: https://cran.r-project.org/web/views/
ExperimentalDesign.html

21

https://dylandijk.github.io/Dissertation_Figures/Figure8.html
https://cran.r-project.org/web/views/ModelDeployment.html
https://cran.r-project.org/web/views/ModelDeployment.html
https://cran.r-project.org/web/views/ExtremeValue.html
https://cran.r-project.org/web/views/ExtremeValue.html
https://cran.r-project.org/web/views/ExtremeValue.html
https://cran.r-project.org/web/views/ExperimentalDesign.html
https://cran.r-project.org/web/views/ExperimentalDesign.html

Definition 4. Geodesic Distance (Antiqueira and Fontoura Costa, 2009). The shortest
path length between two nodes i and j is defined as: s(i,7) = min{w(p(i,7))}. This
is known as the geodesic distance between the nodes (see M. Newman, 2018, Section
6.11.1 for more details).

However, the geodesic distance between unconnected authors will be undefined and there-
fore we need to compute these average distances on a component of the subgraphs. We
therefore compute the geodesic distances pairwise for all authors in the largest component

of the Task View subnetworks.

To compute the pairwise geodesic distances we use the distances() function from the
igraph R package (Csardi and Nepusz, 2006). We then take the average of these distances

for each subnetwork, these values are displayed in Table 6.

22

2.4 Influence of the Authors

Another idea we can investigate using the network data is to measure the influence of
nodes in the network. For the collaboration network we can look at which authors are

important in connecting different groups of the network.

One of the statistics we can consider is the betweenness of a node, this looks at the
number of shortest paths that pass through the node. This measure of centrality can be
interpreted as the control an author has on the information travelling between others (see
M. E. J. Newman, 2001a, Section B). It was introduced by Freeman (1977), and we use
some notation from Kolaczyk and Csardi (2014, Section 4.2.2) to define it in Definiton 5.

Definition 5. Betweenness.

cpv) = Y by(v) (1)

s#Et#vEV

beo() 0 if there exists no path between nodes s and ¢
st\V) =

otherwise

Where o(s,t) is the number of shortest paths from s to t, and o(s,t|v) is the number
of shortest paths between s and ¢ that pass through the node v. In equation (1) we are
summing over all nodes s and ¢, apart form v, that are different from each other. If for
each pair of s and ¢ there only exists one shortest path, then cp(v) will just count the

number of shortest paths going through v.

bs:(v) can be thought of as the probability that point v falls on a randomly selected
geodesic linking s with ¢.

The value of ¢g(v) depends on the number of points in the graph. Freeman (1977) showed
that the maximum possible value of cg(v), for any node v, for any graph with n nodes is

given by equation (2).

n®—3n+2

-)

Therefore using (2) we can get a normalised betweenness score given by equation (3).
Values computed from this normalised version can now be compared across the Task

View subnetworks.

The normalised version of the betweenness centrality measure can be computed with the
igraph package (Csardi and Nepusz 2006, see betweenness documentation®®, in particular

the description of the normalized argument).

In Table 7 we show the top five authors with highest betweenness values. The largest value
across Task Views belongs to Dirk Eddelbuettel in the MachineLearning Task View®¢ with

a normalised betweenness score of 0.38.

Felix Anker

Martin Wilson

Figure 9: Largest component of the author network of authors who have published pack-
ages belonging to the Medicallmaging Task View.

Figure 9 shows the largest component of the Medicallmaging Task View*?. For this Task
View Jon Clayden is ranked the highest (see Table 7), from Figure 9 can see that Jon

Clayden connects three clusters of authors.

HVertex and edge betweenness centrality documentation for the igraph package: https://igraph.
org/r/doc/betweenness.html
4https://cran.r-project.org/web/views/Medical Imaging.html

24

https://igraph.org/r/doc/betweenness.html
https://cran.r-project.org/web/views/MachineLearning.html
https://dylandijk.github.io/Dissertation_Figures/Figure9.html
https://cran.r-project.org/web/views/MedicalImaging.html
https://igraph.org/r/doc/betweenness.html
https://igraph.org/r/doc/betweenness.html
https://cran.r-project.org/web/views/MedicalImaging.html

3 Similarity of Task Views

3.1 Aim

As described on the CRAN Task View initiative GitHub page, the purpose of the Task
Views is to provide a sharp focus on the packages that are relevant for a task. The views
are intended to have a sharp focus so that it is sufficiently clear which packages should be
included or excluded. The editors want to avoid overlap between Task Views. Therefore,

it is important that no two Task Views are too similar.

The CRAN Task View editors have to make decisions on which Task Views to create and
whether they need to remove an existing Task View. Therefore a measure of how similar

two Task Views are, would help make such decisions.

In this section we utilise the package dependency information, and how the subnetworks
formed by the Task Views interact with each other to create a measure of similarity
between any two Task Views. A similarity measure is a real-valued function that quantifies
the similarity between two objects, with larger values implying that the objects are more

similar.

In addition to the dependencies between packages, there is text data describing the Task

Views. In Section 3.3 we incorporate this information into the similarity measure.

3.2 Measuring Similarity of Task Views using Package Depen-

dencies
3.2.1 Defining the Similarity Measure

First of all we will define a measure of similarity between Task Views using the dependency

structure of the packages.

The way we have decided to carry this out is by looking at the number of hard package
dependencies (see Section 1.2) that travel across the Task Views relative to the number of
hard package dependencies within the Task Views. The reason for this choice is because
a package that imports another package (for a specific task) is likely to be used to solve

similar problems.

To be more specific, given two Task Views we have defined the similarity measure between
them as the ratio of the number of between and within edges of the Task Views. This is

given in equation (4), where Vj and V; are the node sets of Task Views k and s respectively

25

as defined in Section 1.5.

SV V) — number of edges between V; and Vj

(4)

number of edges within V; + number of edges within V}

The within edges are edges whose head and tail nodes (defined in Section 1.5) both
belong to the same Task View and neither of them are assigned to both Task Views. The
between edges are edges whose head and tail nodes belong to different Task Views. If
any of the tail or head nodes belong to both Task Views then the edge will be classified as
a between edge. Existence of a between edge implies a package has a direct dependency

on a package from the other Task View.

To then compute the similarity value we divide the number of between edges by the total
number of within edges. As we are summing edges with disregard to the direction of

them, the similarity measure is symmetric.

From the way we have constructed s(V;, V), for any two different Task Views with corre-
sponding node sets V; and Vi, s(Vs, Vi) takes values in the interval [0, 00). If there exists
no edges within both of the Task Views then it is undefined, however this not the case for
any of the Task Views. This does mean that the similarity of a Task View to itself will be
undefined, but we are not interested in measuring the similarity between identical Task
Views. Additionally it is highly unlikely a Task View will be proposed that contains the

identical packages to an existing Task View.

If s(V;, Vi) equals zero for a pair of Task Views this then implies that there are no edges

travelling from one Task View to another (there are no between edges).

Equation (4) can be written using the adjacency matrix A for the entire CRAN package

network and vectors that take values of zero or one:

S(VS) Vk) =

T T T T
Ly e Alyav, + Ly qy Alviave + Lyave ALy, + Ly ay Alyave +

T T T
Ly.av, Alvav, + Lyave Alveay, + Ly ave A Lyeny,

T T
1anv; A 1VWV: + 1v5mv,§ A 1Vsﬂv,§

V¢ denotes the complement of Vi with respect to the node set V' (V is the set of all
packages in CRAN where we let N be the number of packages, defined in Section 1.5). V}
denotes the node set for the Task View k and therefore V)¢ is the set of nodes in CRAN

26

that do not belong to to Task View k. In this formula we use node set intersections, for

example V;, N V¢ is the set of packages that are in Task View k£ but not in Task View s.

In this formula we use the notation 1z for some node set B C V, to define a column
vector of size N which takes value 1 at position ¢ if node ¢ of the node set V' belongs to B
and zero otherwise. Therefore for example 153% A gives a N dimensional row vector
with the 7th element being the number of edges that travel from the node set Vy N V¢ to
node ¢. Consequently l‘T/Skac Aly,ny, will give the number of edges that travel from the
node set V; NV to the node set V, NV .

The subtlety here is when the head or tail belong to both Task Views, in this case I have
still classified this as a between edge. For example, if package 1 belongs to “Bayesian”
and package 2 belongs to “Bayesian” and “HighPerformanceComputing” then the edge
from package to 1 to 2 will be a between edge and vice versa. Therefore two Task Views
that have a large overlap in packages is more likely to have a large value according to this

similarity measure based on package dependencies.

A large value in this measure implies that there are many package dependencies connecting
packages from one Task View to another, and therefore shows that the packages in the
different Task Views are reliant on each other. Also, as we are dividing by the number of
edges within Task Views this normalises for the variation in the number of packages in
each of the Task Views. Additionally it normalises for Task Views that contain packages

which have a large number of dependencies.

3.2.2 Examining Results

We have calculated equation (4) for all possible pairs of Task Views using the snapshot
taken on the 20" of February 2022. At this date there were 40 Task Views so we get a
40 x 40 matrix. This date was before the final transfer to GitHub was completed and
hence this includes a few Task Views that had been retired during the transfer process.

The heatmap for this similarity matrix is given in Figure 10.

27

WebTechnologies |
Tracking -
TimeSeries -|
TeachingStatistics |

Survival |
SpatioTemporal
Spatial |
SocialSciences |
Robust-|
ReproducibleResearch-| 2
Psychometrics |
Phylogenetics |
Pharmacokinetics -
Optimization-|
Officialstatistics |
NumericalMathematics -
NaturalLanguageProcessing -|
Multivariate -
ModelDeployment.|
MissingData -|
Metanalysis -
Medicallmaging -
MachineLearning -
Hydrology -
HighPerformanceComputing-|
GraphicalModels -|

Genetics -|
FunctionalData-|
Finance]

ExtremeValue |
ExperimentalDesign |
Environmetrics |
Econometrics |
Distributions |
DifferentialEquations
Databases

Cluster -}

ClinicalTrials -}
ChemPhys |

Bayesian -|

uersakeq -|

ypaeasaya|q)

Figure 10: Similarity matrix constructed by computing the similarity measure given by
equation (4) pairwise on the Task Views. Using the Task View snapshot taken on the
20" of February 2022.

Table 2 below shows the top five pairs of packages with highest values calculated from

equation (4).

Top 5 pairs with largest similarity values

TimeSeries Spatial Econometrics SocialSciences ClinicalTrials
Finance SpatioTemporal SocialSciences Survival Survival
2.00 1.97 1.84 1.83 1.61

Table 2: Top 5 largest values from applying similarity measure using package dependencies
(equation (4)) using snapshot of CRAN and its Task Views taken on the 20'" of February
2022.

We mentioned that Task Views with large overlap in packages are likely to have a high
value according to the similarity measure based on package dependencies (equation (4)).
If we compare Table 1 and Table 2 we can see that the only shared pair is (Econometrics,
SocialSciences). Therefore this similarity measure is not dominated by overlapping Task

Views.

28

https://dylandijk.github.io/Dissertation_Figures/Figure10.html

In Section 1.4 we highlighted the retirement of certain Task Views during the transfer
process to GitHub. Using the similarity measure defined by equation (4) we can compare
how our our analyses of similar Task Views compares to the decision made by the Task
View maintainers. To do this we perform clustering using the package dependency simi-
larity measure with the 20" of February snapshot to reveal any groupings of similar Task

Views.

In order to use hierarchical clustering we first need to convert the similarity measure to a
dissimilarity measure. If we multiply the values in the similarity matrix by —1 and add the
maximum similarity value we then obtain a dissimilarity matrix that gives positive values
for all the Task Views. With this dissimilarity measure we can then perform agglomerative
hierarchical clustering with complete-linkage. This method of clustering is described in
Algorithm 1 below (notation from, Shahin Tavakoli 2017, Multivariate Statistics notes,

section 7.2).

Algorithm 1. Agglomerative hierarchical clustering

Let o4, ..., 0, be the objects to be clustered. Denote the initial clusters by:
c? = {o},...,C9 = {0}

Set D© to be the distance matrix between the initial clusters {C’i(o)}z-
Fork=1,2,....n—1

a) Find i # j such that (D*71);; is minimal.
Denote this distance by d*
d* := min DY
it

k—1)

b) Merge the two closest clusters C’i(, C’](-k_l) together. Therefore you are then

left with n — k clusters ka), e ,C,(L]i)k, from these compute the pairwise distances

between them to create the new distance matrix D®).

Each element first starts out as an individual cluster, then clusters that are closest together
are merged. After step 1 of the algorithm, part b) requires you to compute the distance

between clusters that have more than one element. The method to compute the distance

29

between clusters is called the linkage method. I have used the complete-linkage method,
which takes the distance between two clusters to be the farthest elements in those clusters.

Therefore the new distance matrix D®) is calculated in the following way:

k 0
acc® pec

After carrying out this algorithm, we can display the construction of the clusters by a
dendrogram. The dendrogram displays the order in which the clusters were combined.
The horizontal lines display the distance between the clusters when they were merged,
these are the d® values from Algorithm 1. Figure 11 below shows the dendrogram

produced from carrying out the hierarchical clustering on my dissimilarity matrix.

Cluster Dendrogram

o _
N ’ﬂ [. .
S oo g
v o = .= = ®w ©
A © e 3 I »
- ER®H > o s 8 2 £
= @ [} 1< = 0 [5 D 2 <
OEQ I = © = [} ® =2 @ o
3= 0o c cXx 5 © » - 0 9 c >
s 8 g o0 g T 5 o ZE 20 ‘£ = £
£ S0 S5 = © o S o= 2 QL < c o 9]
E5 0 X o 8= =3 » c 2 ® 2 g c @© <
24 529 wa N S 2 @ o 8 S3825983g °) o
- =5 < E = L L85 56070028 f [0} >
=3 = BB o =S =
= (IC)Q- 5 Z2Zc = I © 50 = ||§
LS go £ T &5 4 B g 8= c g
z = = ~ ‘A ip & 2 2 =
< T = s} DD GE a S s =328
o v _| o 7] T 2 >0 S O c 8
‘S S Bwu) Qo ‘GE‘”E XY o;‘_,a
RIS ARS] X 2 ca = S 3>
T == i £ 0 IS » o £ c »
Zo o D ® <] B E o k%
c c ol = = 5 © T 0
o O - > = R = »n O PO
O D c _ O w© [e] ICA =
o kel w © T 8= z = o =
5 — > T > = s 3
o = T 2 c ® n® 2
o = 2 c 2 Q o 2
8 8 T A E g < E
= = Z O c N S S 2
T © o @ s 2 i} g E © b=
= o e 2 g9 IS] o
Q 2 S @ o3 o xZ
n E cn c @ <
o - o o ® o
= 1S S 5 T
Re] = w o
=
© (2]
o1
n

Figure 11: Dendrogram created from applying agglomerative hierarchical clustering with
complete-linkage. Using the dissimilarity matrix constructed by multiplying the values in
the similarity matrix (Figure 10) by —1 and adding the maximum similarity value.

If we set the threshold to 0.85 we retrieve seven clusters of pairs (see Figure 11): (Finance,
TimeSeries), (Spatial, SpatioTemporal), (Econometrics, SocialSciences), (ClinicalTrials,
Survival), (Cluster, Multivariate), (Bayesian, GraphicalModels) and (Genetics, Phyloge-

netics).

30

3.2.3 Comparing Results to the Decisions Made by the CRAN Task View
Editors

Now if we look at the decisions made by the Task View maintainers between 20" of
February and the 4" of April 2022, which we can follow from the open and closed sections
within the issues tab3* of the ctv GitHub account. We can see that the following Task

Views were retired.

The SocialSciences Task View was one of the old existing task views that was useful
when it was introduced but turned out to be too broad to be useful. Achim Zeileis and
John Fox decided it would be better to separate this Task View into smaller topics, such
as: mixed-effects models, social network analysis, demography, and causal analysis or
matching/propensity scores (see issue 8¢ from the issues tab for the full discussion). This

decision has led to the proposal*” of a Causallnference Task View.

The Multivariate task view had been unmaintained for a long time. It was also a
task view that was useful when it was established but turned out to be too broad to
be maintainable. The Task View editors had made attempts in the past to find new
maintainers that could give the Task View a sharper focus and carry on the maintenance.
It was decided that this Task View should be retired (see issue 9%®from the issues tab for

the full discussion).

The maintainer of the Genetics Task View stepped down. This was a small task view
which had not been updated for a while, hence many relevant packages were missing.
It was mentioned that the scope of Task View should possibly be reconsidered to avoid

overlap with the Phylogenetics Task View.

The maintainer for the Phlyogenetics Task View was unresponsive to the Task View
editors. In the end it was decided that both the Genetics and Phlyogenetics Task Views
should be merged and the current versions should be archived (see issue 174 from the

issues tab for the full discussion).

In summary the SocialSciences and Multivariate Task Views were archived as they
were too broad. The Task Views covering a wide-ranging subject often do not make it

easier for R users to find their required package. These Task Views are also difficult to

46Retirement of SocialSciences Task View: https://github.com/cran-task-views/ctv/issues/8

47Proposal of Causallnference Task View: https://github.com/cran-task-views/ctv/issues/
15

48Retirement of Multivariate Task View: https://github.com/cran-task-views/ctv/issues/9

49Decision to merge Phlyogenetics and Genetics Task View: https://github.com/
cran-task-views/ctv/issues/17

31

https://github.com/cran-task-views/ctv/issues
https://github.com/cran-task-views/ctv/issues/8
https://github.com/cran-task-views/ctv/issues/15
https://github.com/cran-task-views/ctv/issues/9
https://github.com/cran-task-views/ctv/issues/17
https://github.com/cran-task-views/ctv/issues/8
https://github.com/cran-task-views/ctv/issues/15
https://github.com/cran-task-views/ctv/issues/15
https://github.com/cran-task-views/ctv/issues/9
https://github.com/cran-task-views/ctv/issues/17
https://github.com/cran-task-views/ctv/issues/17

maintain as there many possible packages that could potentially be added to the Task
View. The Genetics and Phlyogenetics Task Views had not been kept up to date, and

there was an overlap in the scope of the two task Views.

All four of these Task Views were part of separate clustering pairs derived from the clus-
tering using my similarity measure (see Figure 11) obtained from dependency of packages
within Task Views. The reasoning for retirement of these Task Views was mostly due to

lack of frequent maintenance or the topics being too broad.

The retirement of these Task Views confirms the selection of similar groups of Task
Views selected by my similarity measure. It also highlights the difficulty that is faced
by Task View editors of finding maintainers so that Task Views are kept up to date. The
discussions also point out that making decisions on which Task Views to create, and how
to make sure they still have a sharp focus is not easy. This will become even harder as

the CRAN environment continues to grow.

3.3 Enhancing the Similarity Measure with Task View Descrip-

tion Text
3.3.1 Aim

In addition to the package dependency structure, we want to use the text that describes
each of the Task Views to enhance the final similarity measure. This text is shown on
the Task View web pages, that we referred to in Section 1.4, whose source files where
converted to Markdown files. Each piece of text begins with a few paragraphs providing
a brief overview of the Task View. Then it lists all of the packages in subtopics alongside
a brief description of the separate packages. The text then concludes with a section
containing links to related books, papers, blogs. A further description of how the text
is formatted and structured is given in the documentation® file from the ctv GitHub

repository3V.

Using NLP techniques we can measure how similar two pieces of text are, and then com-
bine this similarity measure with the previous similarity measure we have defined (given
in equation (4)) using the ratio of the between and within edges. In the literature there
are many cases of using supervised learning to decide on how to weight each similarity in
the combined measure. In our case we are performing unsupervised learning, as there is

no labeled grouping of Task Views. Therefore I will assign a weighting to each similarity

50Documentation for structure and format of Markdown files that render to HTML pages for Task
View web pages: https://github.com/cran-task-views/ctv/blob/main/Documentation.md

32

https://github.com/cran-task-views/ctv/blob/main/Documentation.md
https://github.com/cran-task-views/ctv
https://github.com/cran-task-views/ctv
https://github.com/cran-task-views/ctv/blob/main/Documentation.md

based on what I deem to be more important and what I want my final measure to mean.

3.3.2 Method to Measure Text Similarity

The method we use to measure the similarity of the description files, is to vectorise the
documents into numerical feature vectors and then compute the pairwise cosine similarities
between them. Where the vectors represent the documents by word occurrences, ignoring
the relative position information of the words in the document. This type of vectorisation

is known as the “Bag of Words” representation.

Creating the vectors consists of three main steps: tokenizing, counting, and weighting.
We follow the process described in the documentation®! for text-feature extraction of the
scikit-learn Python (Van Rossum and Drake Jr, 1995) package (Pedregosa et al., 2011).

To weight the occurrence of the words we use the TF-IDF method (the method is discussed
further in Robertson, 2004). Different variations of this method are explained in section

6.2.3.4 ®2 of the scikit-learn documentation, we define the exact method I use later.

Vectorising the text in this way and taking the cosine similarity is a simple method of
computing similarities between texts but has performed well in the past. But this method

does not look at the context of the word or their semantic similarity.

The first thing to do is to collect the data, this is straight forward as the Markdown files

t29. We can

are all in standardised repositories on the CRAN Task Views GitHub accoun
use the readLines () function from the base R package (this is a base R package, R Core

Team, 2020) in order to extract the text.

The readLines() function reads all text lines from a connection (see the documenta-
tion3), which it takes as an argument. Once we have read the text data from these source
files it then needs to be cleaned. This includes removing text that will not be useful in
measuring text similarity, such as hyper links and numbers. We also removed package
names, as information regarding the package assignment has already been included in the

similarity measure using the package dependencies.

Slscikit-learn Python package documentation: https://scikit-learn.org/stable/modules/
feature_extraction.html#text-feature-extraction

®2Gection 6.2.3.4 of scikit-learn documentation: https://scikit-learn.org/stable/modules/
feature_extraction.html#tfidf-term-weighting

%readLines() function documentation: https://stat.ethz.ch/R-manual/R-devel/library/
base/html/readLines.html

33

https://scikit-learn.org/stable/modules/feature_extraction.html#text-feature-extraction
https://scikit-learn.org/stable/modules/feature_extraction.html#tfidf-term-weighting
https://scikit-learn.org/stable/modules/feature_extraction.html#tfidf-term-weighting
https://github.com/cran-task-views
https://stat.ethz.ch/R-manual/R-devel/library/base/html/readLines.html
https://stat.ethz.ch/R-manual/R-devel/library/base/html/readLines.html
https://scikit-learn.org/stable/modules/feature_extraction.html#text-feature-extraction
https://scikit-learn.org/stable/modules/feature_extraction.html#text-feature-extraction
https://scikit-learn.org/stable/modules/feature_extraction.html#tfidf-term-weighting
https://scikit-learn.org/stable/modules/feature_extraction.html#tfidf-term-weighting
https://stat.ethz.ch/R-manual/R-devel/library/base/html/readLines.html
https://stat.ethz.ch/R-manual/R-devel/library/base/html/readLines.html

We now define the exact vectorisation process we use, once the text has been extracted

and cleaned:

1. Tokenizing
Tokenizing is the splitting of a document into tokens, using white spaces and punctu-
ation as token separators. We have chosen tokens to be individual words. Therefore
for each document the character string is converted into a character vector contain-
ing the separate words. To execute this we use the unnest_tokens() function from
the tidytext R package (Silge and Robinson, 2016).

2. Lemmatisation
The next thing to do is to perform lemmatisation, this the process of convert-
ing the inflected forms of a word to the lemma. To implement this we use the
lemmatize words () function from the textstem R package (Rinker, 2018b). Within
this function we use the default dictionary hash_lemmas from the lexicon R pack-

age (Rinker, 2018a) which defines the replacement of each word.

3. Counting
For each of the documents we aggregate the words to get the number of each of the
words in the document. We then convert these to frequencies by dividing by the

number of unique words in each of the documents (Task Views)

4. Weighting using TF-IDF
From these term frequency vectors we want to increase the weight of words that have
higher importance in describing the document. TF-IDF is a method of weighting

the vector of tokens.

TF stands for term frequency, and is the number of times a word appears in the

document. We have retrieved this from the previous step.

IDF stands for inverse document frequency, this term is used to weight the TF of a
term. It counts the number of documents where the term appears looking across all
the documents that make up the corpus. In our case, the corpus is the description
pages of the 36 Task Views (number of Task Views on the 4% of April 2022, see
Table 4). IDF gives a larger weighting to words that appear in fewer documents
across the corpus. There exists different variations of the IDF term, below we give

the formula that we applied.
IDF of word ¢ with respect to the group of documents D is defined as:

N
IDF (i, D) = logs (—)
nA

2

34

where

n,=|{deD:ied}

If a word i € d appears in every document, n; = 36, the weight IDF(i, D) will be
equal to zero. A word that appears in fewer documents will have a larger weighting.
The intuition of this term, is that a term that appears in many documents will not

be a good discriminator (Robertson, 2004).
The TF-IDF term for a word 7 in d with respect to D is

TF(i,d) x IDF(i, D)

5. Cosine Similarity
Cosine similarity measures the similarity between two vectors by calculating the
cosine of the angle between them (see Han, Kamber, and Pei, 2012, Section 2.4.7).
Therefore a value close to one implies the vectors are very similar and and a value
of minus one means they are very dissimilar. If we normalise the vectors, the cosine
between them is equivalent to the dot product. Therefore the cosine similarity

between two vectors x and y can be written as:

{L'Ty
([[yl

Therefore for two pieces of text that are then vectorised using the method we have given.
We define the similarity between the two vectors, which we denote as 7T and T}, by

Equation (5) below.

Ts - Ty

$S(T,Th) = morre (5)
T[T

35

3.3.3 Combining Similarity Measures

In Section 3.2 we defined a similarity measure between Task Views using the package de-
pendencies (defined by equation (4)). Then in Section 3.3 we gave a method of measuring

the similarity between two pieces of text (defined by equation (5)).

We can combine both these similarity measures to create an enhanced similarity measure
of Task Views. To combine them we simply add them together and re-weight the contri-
bution of each the separate similarity measures based on how much we want each of the

two similarity measures to contribute.

2
15
1
05
0

Figure 12: Similarity matrix from

similarity measure using package Figure 13: Similarity matrix from
dependencies (s), defined by equa- similarity measure using text simi-
tion (4). larity (s'), defined by equation (5).

Figure 12 and Figure 13 are the similarity matrices computed using equation (4) and

equation (5) respectively applied to the snapshot taken on the 4" of April 2022.

The final similarity measure between two Task Views, ¢ and j, will therefore be defined

by equation (6).

S(i,7) = wi-s(Vi, V) + wy-5'(T;,T); wy+wy =1 (6)

Choosing the value of the weights w; and wy lets us decide how how much influence
that each variable has in determining the overall similarity. To select these weights we
look at the relative contribution to the average object similarity measure over all pairs of
observations. This method is described in section 14.3.3 of Hastie, Tibshirani, and J. H.

Friedman (2009), they used the method to combine dissimilarity measures.

We can rewrite the average of the combined similarity matrix over all observations in

36

https://dylandijk.github.io/Dissertation_Figures/Figure12.html
https://dylandijk.github.io/Dissertation_Figures/Figure12.html
https://dylandijk.github.io/Dissertation_Figures/Figure13.html
https://dylandijk.github.io/Dissertation_Figures/Figure13.html

terms of the averages of the two separate similarity matrices.

with

| N LA
5= WZZS i, ;) and ' = —ZZS/(%,QS]')

i=1 j=1 =1 j=1

K

This shows the influence of the similarity component s on the combined average is wy - 5

and w, - s’ for the component s’

The similarity measure based on package dependencies (s), identified Task Views as being
close that were then consequently removed by the Task View maintainers. We therefore

want the majority of the information to come from this component.

Hence we set the weights so that 60% of the total average is explained by the package

dependencies similarity. So w; is given by equation (7) below.

37

4 Task View Recommendations

4.1 Aim

The Task Views are maintained by volunteers and are always welcome to contributions for
additional content from members of the community. Due to the huge number of packages
that are in CRAN it is infeasible for a Task View maintainer to review all of the available
packages. Therefore, a model that would give a small selection of high quality suggestions

for the maintainer to then review would be useful.

Such a model would also be useful from the perspective of a package developer. After
publishing their package onto CRAN, they could then check whether they should propose

their package to one of the Task View maintainers.

The similarity measure that we created in the previous section, is constructed in a way
such that it cannot be used to measure the similarity of a single package to a Task View.

This being the case, we need to construct a new model to give suggestions.

The model we want to construct should give a Task View suggestion after being giving
some set of features of an unassigned package. However, it would not be reasonable to
assign a Task View to every package. This would depart from the objective of Task Views,
which is to give a sharp focus on packages that are needed for a task. For this reason, the

model should also have the possibility of assigning a package to no Task View.

We train the model using the CRAN snapshot taken on the 4™ of April 2022 (Table 4 in
the Appendix gives a summary of the snapshot)). Consequently, the model should have
a multicategory response variable, made up of 37 categories. The 36 Task Views with an

additional “None” category.

4.2 Multinomial Logistic Regression

To handle this multi-class classification problem we use a multinomial logistic model.
This is a generalization of logistic regression for multinomial response variables. Once
the model is fitted, when given a set of predictors it will output a probability vector with

length of the number of possible classes.

To describe the logistic regression model we let y; denote the outcome for observation 7,

and x; the p-dimensional vector of predictors for observation .

In logistic regression, a response for an observation 7 is seen as an independent trial from

38

a Bernoulli distribution with probability 7; (y; takes values in {0,1}). The probability of

observation i is therefore given by equation (8).

P(y|m) = nf" (1 —m)' ¥ (8)

The logistic regression model is constructed by using the the sigmoid function, o(z) :=

exp (z)
14+exp (z)

the class probabilities are described as follows:

. Then introducing the parameter vector 3 and setting o(x!3) = ;. Therefore

1
(v i) 1+ exp (—x7)
1
P(y; =0|x;) = —————— 9
(= 0%) = {5 B Q)
Which implies that:
P(y; = 1\Xz~)) T
log (— =x; 03 10
Py = Ox) 1o

see Hastie, Tibshirani, and J. H. Friedman 2009, Section 4.4 for more details on logistic

regression models.

For multinomial logistic regression, we allow for more than two categories and we model
the response of an observation as the result of a single multinomial trial. We denote this
outcome by y; = (¥, - .., Yi), where y;; = 1 when the response is in category j and
y;; = 0 otherwise. Where ¢ denotes the number of possible categories, which in our case

is 37.

We let 7;; denote the probability of outcome y;; occurring. In our case m;; is the probability
of allocating the package ¢ with predictors x; to Task View j, where y; represents a

single Task View allocation for the predictors x;. The probability mass function for the

39

multinomial distribution for outcome ¢ is given by:

37

P(yilm;) = H ng;j

j=1

with:

iyij =1 and imj =1
j=1 j=1

Multinomial logistic models simultaneously describe the log odds for all (5) possible pairs
of categories. To parameterise this, the traditional approach is the baseline-category logit
model, where equation (10) from logistic regression is extended to ¢—1 logits. Where each
of the response categories is paired with a baseline category, and the jth baseline-category

logit is defined as log (22).

c—1 parameter vectors 3; are introduced, and the baseline-category logit model is defined

by these equations:

bgcﬁ>:xﬂ%, i=1,....c—1 (11)
Tic

Therefore a separate parameter vector is introduced for each baseline-category logit. Fur-
ther details of this model is described in Agresti (2015, Section 6.1).

Another parameterisation is the one taken by J. Friedman, Hastie, and Tibshirani (2010).

Here we have ¢ parameter vectors, and the model is given by:

___ends)
T e B

j=1,...c (12)

This is a more symmetric approach, however if we add any constant vector to the pa-
rameter vectors we retrieve identical probabilities. Therefore, the value of the parameters
cannot be estimated without the introduction of constraints. This parameterisation was

used in the context of regularisation which then handles this issue.

40

4.3 Model Fitting
4.3.1 Data

When deciding on a set of packages to train and test the model, it would not make sense
to include all packages that are not assigned a Task View. The large proportion of these
packages would have not been reviewed by Task View maintainers, and so would not be

representative for packages belonging to the “None” category.

Therefore to choose the packages to include that are labelled as belonging to the “None”
category, we select packages that have a high amount of monthly downloads. This chosen
threshold of monthly downloads will act as a proxy for selecting a set of packages that
will be labeled as not being assigned to a Task View. In order to decide on this threshold
we use the cranlogs R package (Csardi 2019, the package is described in Section 2.2.2 of
this report).

Within the Task Views the top 25% downloaded packages have more than 2500 monthly
downloads. We use packages with no assigned Task Views that have more monthly down-
loads than this threshold as a proxy for packages that have been rejected by Task View

maintainers.

In total there are 3514 packages that have at least one assigned Task View, and 1245 not
assigned packages that meet the decided monthly download threshold. Combining these
gives us a total number of 4759 observations, we then split this data set into a training

and testing set with an 80:20 ratio for each set respectively.

In addition, we have the rest of the packages that have no Task View assignment that do
not meet the monthly download threshold (14259 packages). After fitting the model, we
make predictions with the fitted model on this set of packages to generate suggestions for

packages to be added to Task Views.

An important point is how packages with multiple Task View allocations are handled.
We have represented these packages as separate observations that have the same set of

predictors but different response labels.

4.3.2 Features

Throughout the report we covered two main types of data related to the packages. The
dependency structure of packages and authors, and then the surrounding text meta-data
of the packages. We incorporate both types of data to define features for the model, to

predict allocation to a Task View.

41

In Section 3.3 we already carried out the text retrieval, cleaning and created vectorized
versions of each of the Task View sources. Additionally to this, on CRAN for each package
there exists an extended title and a further piece of text giving an overview of the packages
functionalities. This short description of the package can be seen under the title of the
respective package web page!'!'. Therefore we can calculate the similarity of each of the

Task View texts with the text data from the individual packages.

To execute this we combine the title and description texts of each package, and we then
vectorize the text in a similar way as described in Section 3.3.2. We tokenize and lemma-
tize as described previously, and weight the words using the TF-IDF weights computed
from the Task View sources. We have not recalculated the IDF weights using the indi-
vidual package text, therefore words that appear in the package text but do not appear
in the Task View sources will not be taken into account. Then we compute the cosine
similarity of the vectorized package text to each of the vectorized Task View text to return

36 features.

We also include the dependency structure of the packages as features of the model. We
look at the immediate hard dependencies of packages and then calculate the proportion
of the assignment of these packages to Task Views and no assignment. This creates 37

features.

Moreover we have computed the proportion of Task Views that that the authors of each

package worked on. This creates another 37 features.

4.3.3 Model Tuning

To tune the model we use LASSO in order to create a classifier with a good prediction

accuracy.

LASSO solves the problem given by equation (13).
L
: T
min N; Wyi, B 2i) + AllBh (13)

Where [(y;,n;) is the negative log-likelihood contribution for observation i. LASSO can
be carried out in R using the glmnet R package (J. Friedman, Hastie, and Tibshirani,

2010). There is a vignette®® with this package that provides an extensive description

*Vignette for the glmnet package: https://cran.r-project.org/web/packages/glmnet/
vignettes/glmnet.pdf

42

https://cran.r-project.org/web/packages/lubridate/index.html
https://cran.r-project.org/web/packages/glmnet/vignettes/glmnet.pdf
https://cran.r-project.org/web/packages/glmnet/vignettes/glmnet.pdf
https://cran.r-project.org/web/packages/glmnet/vignettes/glmnet.pdf

of the different models you can fit. This package was made publicly available alongside
the paper by J. Friedman, Hastie, and Tibshirani (2010). For the case of multinomial
regression they used the parameterisation of the class probabilities given by equations
(12).

The model is fit under the multinomial likelihood and therefore the negative log-likelihood

for N independent observations is given by equation (14).

37

— Uy, ™) = — Y _ yijlog(my) (14)

J=1

Now replacing the class probabilities, m;;, with the parameterisation given by equations
(12), the LASSO penalized negative log-likelihood function (13) is then given by equation
(15).

1 N 37 37
min <37 | 2wl 8y) ~ log(3_ exp(xl B,))] + Al (15)
i=1 j=1 j=1

The glmnet () function solves the problem given in equation (15) over a grid of A values
(page 2 of vignette®). This is a decreasing sequence of \’s starting from the the smallest
value A\, that causes Bj to be equal to zero Vj € {1,...,c} (see J. Friedman, Hastie,
and Tibshirani, 2010, section 2.5 for full details). This creates a model for each A value

in the grid of \ values.

In order to choose a A a common method is to use cross-validation, and we can perform
this using the cv.glmnet() function. For each A this now performs cross-validation,
giving as a performance measure. The data is split into ten folds (the default) and for
each fold the model is fit on the rest of the data then the performance of the model is
calculated on the fold.

The default loss function used to calculate the performance for multinomial regression is
the multinomial deviance. The deviance for multinomial models is two times the difference
of the log-likelihood of the saturated model minus the log-likelihood of the model we are
fitting (see Agresti, 2015, Section 6.1.4).

For the multinomial case the likelihood for the saturated model is just one, therefore the
multinomial deviance is equal to minus two times the log-likelihood of the fitted model
(this is also true for the binomial model, see J. Friedman, Hastie, and Tibshirani, 2010,

Caption of Figure 2 in Section 6).

43

https://cran.r-project.org/web/packages/glmnet/vignettes/glmnet.pdf

98 91 8 77 66 54 44 34 21 127 5 3 3 3 2 2 2 2 2 1 0O

Multinomial Deviance

Figure 14: This figure shows the multinomial deviance against the different A values.
The red points are the average values of the multinomial deviance across the folds. The
vertical bars on each point are the standard deviations of these values (standard error).
The x coordinate of the left vertical line is the A value that gives the minimum average
value (lambda.min). The other vertical line indicates the A\ value that gives the average
error within one standard deviation of the minimum (lambda.1se).

4.3.4 Model Accuracy and Recommendations

After running cv.glmnet () we select the A value that gave the lowest average multinomial
deviance across the folds (the A value indicated by the left vertical line in Figure 14). This
A value is denoted as lambda.min in the documentation of the glmnet R package. For
this chosen value of A we then test the performance of the model on the data that we
held out. Using the largest predicted probabilities as the predicted class and then taking
the proportion of correct classifications to the number of observations in the test set we

get an accuracy of 80.44%.

In Section 4.3.1 we described the data we use to train and test the model, and mentioned
that we have 14259 packages that are not assigned a Task View and do not meet the
monthly download threshold we set. Now that the model is fit, we can look at the
predictions of the model on this set of packages. This generates recommendations for the

existing Task Views.

For each of the Task Views we look at the packages that have the highest predicted
probabilities. We give the top five packages with highest probability in Table 8 in the
Appendix.

44

4.3.5 Feedback from Maintainers

From the model predictions given in Table 8 I emailed four Task View maintainers, with
suggestions for packages to add to their respective Task Views. I only sent a small selection

of packages as recommendations.

I suggested to the NaturalLanguageProcessing Task View®® maintainer (Fridolin Wild)
to add the word2vec package, he agreed and I have therefore sent a pull request®® via
GitHub.

In addition, T emailed the Psychometrics Task View” maintainer (Patrick Mair). T sug-
gested the Rirt and dextergui package, and he agreed that both should belong to the
Task View. The addition of these packages to the Task View can be seen via the commit®®

on the Markdown file hosted on the Psychometrics Task View GitHub repository.

I also emailed the Environmetrics Task View® maintainer (Gavin Simpson) with package
suggestions, he replied with “By the looks of some of those, they should be added with
other packages and may need their own section(s).” He asked for me to send a pull request
that makes the relevant changes to the Task View that includes a summary sentence as to
what the package does. I ran out of time to do this, but this emphasises the importance

of domain knowledge for Task View maintenance.

S®NaturalLanguageProcessing Task View web page: https://cran.r-project.org/web/views/
NaturalLanguageProcessing.html

56pull request to add word2vec R package to the NaturalLanguageProcessing Task View
(waiting to be accepted as of the 4'" of May 2022): https://github.com/cran-task-views/
NaturalLanguageProcessing/pull/3

5TPsychometrics Task View web page: https://cran.r-project.org/web/views/Psychometrics.
html

8Commit on the Psychometrics Task View Markdown showing the addition of the
suggested packages: https://github.com/cran-task-views/Psychometrics/commit/
481f17b0e4a3184823806d8c7971£2e397b406b1

S Environmetrics Task View web page: https://cran.r-project.org/web/views/Environmetrics.
html

45

https://cran.r-project.org/web/views/NaturalLanguageProcessing.html
https://github.com/cran-task-views/NaturalLanguageProcessing/pull/3
https://cran.r-project.org/web/views/Psychometrics.html
https://github.com/cran-task-views/Psychometrics/commit/481f17b0e4a3184823806d8c7971f2e397b406b1
https://cran.r-project.org/web/views/Environmetrics.html
https://cran.r-project.org/web/views/NaturalLanguageProcessing.html
https://cran.r-project.org/web/views/NaturalLanguageProcessing.html
https://github.com/cran-task-views/NaturalLanguageProcessing/pull/3
https://github.com/cran-task-views/NaturalLanguageProcessing/pull/3
https://cran.r-project.org/web/views/Psychometrics.html
https://cran.r-project.org/web/views/Psychometrics.html
https://github.com/cran-task-views/Psychometrics/commit/481f17b0e4a3184823806d8c7971f2e397b406b1
https://github.com/cran-task-views/Psychometrics/commit/481f17b0e4a3184823806d8c7971f2e397b406b1
https://cran.r-project.org/web/views/Environmetrics.html
https://cran.r-project.org/web/views/Environmetrics.html

5 Discussion and Conclusion

5.1 Similarity of Task Views

In Section 3 we constructed a similarity measure S(i,7) that measures the similarity of
any two Task Views ¢ and j. This was constructed as a weighted combination of two

similarity measures that each utilized different attributes of the Task Views.

We first constructed the similarity measure s(V;, V;), that looked at the number of hard
package dependencies travelling from one Task View to another. We then looked at

utilizing the text data to help measure similarity between Task View.

Extracting the text that is displayed on the Task View web pages before the transfer to
GitHub had been completed, would have been much more laborious. Therefore for the
CRAN snapshot taken on the 20" of February 2022, we just looked at the results of the

similarity measure s(V;, V;).

We found that the pairs chosen by clustering with this similarity measure coincided with
the four Task Views that were decided to be archived by the Task View editors.

Once the transfer was completed we could extract the text data, and use this to enhance
the similarity measure. The process of vectorizing the Task View text then became useful

when creating features for the Task View recommendation model in Section 4.

After the official announcement of the new Task View workflow was completed, the Task
View editors started to consider new Task view proposals®*47%°. In the documentation®
for proposing a new Task View there is an emphasis on avoiding overlap with other Task
Views. Therefore our similarity measure could be useful to see which Task Views the
newly proposed Task View is similar to. This may help proposers and reviewers decide if

the scope of new Task View should be sharpened or avoided completely.

In conclusion, the similarity measure we constructed using package dependencies agreed
with retirement decisions made by the Task View editors. We can not just look at the
overlap of packages between Task Views, as for example there exist many packages in
CRAN that have the same aims. In addition some packages can have functionalities that
can motivate them belonging to multiple Task Views. We need to look at whether the

scopes of the Task Views are similar, we tackled this by using package dependencies.

50Proposal of InfectiousEpi Task View: https://github.com/cran-task-views/ctv/issues/25
6'Documentation for proposing a new Task View: https://github.com/cran-task-views/ctv/
blob/main/Proposal.md

46

https://github.com/cran-task-views/ctv/blob/main/Proposal.md
https://github.com/cran-task-views/ctv/issues/25
https://github.com/cran-task-views/ctv/blob/main/Proposal.md
https://github.com/cran-task-views/ctv/blob/main/Proposal.md

5.2 Task View Recommendations

In Section 4 we used a multinomial logistic regression model to classify packages to a
Task View. We dealt with multiple assigned packages by having separate observations
with identical features but with different labels. This departs from the assumptions made
in multinomial regression, where we assume that we have N independent observations
from single multinomial trials. If a multi-labeled package is assigned to a Task View we

then know that the next trial will not be the same Task View again.

The multiple assignment in the data suggests that using a multi-label classifier would be a
more sound approach. In such a model, it would be possible for a package to have a large
predicted probability for multiple Task Views. However, we used a multi-class model that
outputs a probability vector and therefore will avoid multi-label suggestions. As the aim
of the Task View editors is to create Task Views with a sharp focus and to avoid overlap,

it could be argued that our approach is more suitable.

Our model had an accuracy of 80% on a hold out data set, and using this model we
created a table of recommendations given in Table 8 in the Appendix. If we review the
packages in Table 8 and compare these suggestions to the respective package descriptions,
the majority of these recommendations seem reasonable. Of course to check the quality

of these recommendations we should provide them to further Task View maintainers and
ask for their feedback.

In conclusion, using: package dependencies, author collaborations and the text informa-
tion we created a model with a good classification accuracy on a hold out set. However,
in order to determine the quality of the predictions we would need more feedback from
the Task View maintainers. We would then be able to decide if this model can be used

in practice to provide recommendations to the maintainers.

47

6 Bibliography

Articles

Antiqueira, Lucas and Luciano da Fontoura Costa (Jan. 2009). “Characterization of sub-
graph relationships and distribution in complex networks”. In: New Journal of Physics
11.1, p. 13058. DoI1: 10.1088/1367-2630/11/1/013058.

Bella, Enrico di, Luca Gandullia, and Sara Preti (2021). “Analysis of scientific collabora-
tion network of Italian Institute of Technology”. In: Scientometrics 126.10, pp. 8517—
8539. 1SSN: 1588-2861. DOI: 10.1007/s11192-021-04120-9.

Freeman, Linton C (1977). “A Set of Measures of Centrality Based on Betweenness”. In:
Sociometry 40.1, pp. 35—41. DOI: 10.2307/3033543.

Friedman, Jerome, Trevor Hastie, and Robert Tibshirani (2010). “Regularization Paths for
Generalized Linear Models via Coordinate Descent”. In: Journal of Statistical Software
33.1, pp. 1-22. URL: https://www. jstatsoft.org/v33/i01/.

Grolemund, Garrett and Hadley Wickham (2011). “Dates and Times Made Easy with
lubridate”. In: Journal of Statistical Software 40.3, pp. 1-25. URL: https://www.
jstatsoft.org/v40/103/.

Joo, Rocio et al. (2020). “Navigating through the r packages for movement”. In: Journal
of Animal Ecology 89.1, pp. 248-267. DOI: https://doi.org/10.1111/1365-
2656.13116.

Newman, M E J (June 2001a). “Scientific collaboration networks. II. Shortest paths,
weighted networks, and centrality”. In: Physical Review E 64.1, p. 16132. DOI: 10.
1103/PhysRevE.64.016132.

— (Jan. 2001b). “The structure of scientific collaboration networks”. In: Proceedings of
the National Academy of Sciences 98.2, p. 404. DOI: 10.1073/pnas.98.2.404.

Pedregosa, Fabian et al. (2011). “Scikit-learn: Machine Learning in Python”. In: Journal
of Machine Learning Research 12.85, pp. 2825-2830. URL: http://jmlr.org/papers/
v12/pedregosalla.html.

48

https://doi.org/10.1088/1367-2630/11/1/013058
https://doi.org/10.1007/s11192-021-04120-9
https://doi.org/10.2307/3033543
https://www.jstatsoft.org/v33/i01/
https://www.jstatsoft.org/v40/i03/
https://www.jstatsoft.org/v40/i03/
https://doi.org/https://doi.org/10.1111/1365-2656.13116
https://doi.org/https://doi.org/10.1111/1365-2656.13116
https://doi.org/10.1103/PhysRevE.64.016132
https://doi.org/10.1103/PhysRevE.64.016132
https://doi.org/10.1073/pnas.98.2.404
http://jmlr.org/papers/v12/pedregosa11a.html
http://jmlr.org/papers/v12/pedregosa11a.html

Robertson, Stephen (Jan. 2004). “Understanding inverse document frequency: on the-
oretical arguments for IDF”. In: Journal of Documentation 60.5, pp. 503-520. DOTI:
10.1108/00220410410560582.

Shahin Tavakoli (2017). “Multivariate Statistics (ST323 ST412)”. In: URL: https://

stavakoli.com/activities/multivariate_warwick/.

Books

Agresti, Alan (2015). Foundations of linear and generalized linear models. Wiley series
in probability and statistics. Hoboken, New Jersey: John Wiley & Sons Inc. ISBN:
978-1-118-73003-4.

Han, Jiawei, Micheline Kamber, and Jian Pei (Jan. 2012). 2 - Getting to Know Your Data.
en. The Morgan Kaufmann Series in Data Management Systems. Boston: Morgan
Kaufmann, pp. 39-82. po1: 10.1016/B978-0-12-381479-1.00002-2.

Hastie, Trevor, Robert Tibshirani, and J H Friedman (2009). The elements of statistical
learning: data mining, inference, and prediction. 2nd ed. Springer series in statistics.

New York, NY: Springer. URL: https://hastie.su.domains/ElemStatLearn/.

Kolaczyk, Eric D and Géabor Csardi (2014). Statistical Analysis of Network Data with R.
Vol. 65. Use R! New York, NY: Springer New York. DOI: 10.1007/978-1-4939-0983-
4,

Newman, Mark (2018). Networks. eng. 2nd ed. Oxford: Oxford University Press. DOI:
10.1093/0s0/9780198805090.001.0001.

Van Rossum, Guido and Fred L Drake Jr (1995). Python tutorial. Amsterdam, The Nether-
lands: Centrum voor Wiskunde en Informatica. 1SBN: 978-1-4414-1269-0.

Wickham, Hadley and Jennifer Bryan (2015). R Packages. en. 2nd. O’Reilly Media. URL:
https://r-pkgs.org/.

R Packages and Documentation

Allaire, J.J. et al. (2017). networkD3: D3 JavaScript Network Graphs from R. R package
version 0.4. URL: https://CRAN.R-project.org/package=networkD3.

49

https://doi.org/10.1108/00220410410560582
https://stavakoli.com/activities/multivariate_warwick/
https://stavakoli.com/activities/multivariate_warwick/
https://doi.org/10.1016/B978-0-12-381479-1.00002-2
https://hastie.su.domains/ElemStatLearn/
https://doi.org/10.1007/978-1-4939-0983-4
https://doi.org/10.1007/978-1-4939-0983-4
https://doi.org/10.1093/oso/9780198805090.001.0001
https://r-pkgs.org/
https://CRAN.R-project.org/package=networkD3

Almende B.V. et al. (2021). visNetwork: Network Visualization using "vis.js’ Library. URL:
https://CRAN.R-project.org/package=visNetwork.

Csardi, Gabor and Tamas Nepusz (2006). The igraph software package for complex network
research. URL: https://igraph.org.

Csardi, Gabor (2019). cranlogs: Download Logs from the 'RStudio’ "CRAN’ Mirror. URL:
https://CRAN.R-project.org/package=cranlogs.

Kiener, Patrice (2021). RWsearch. URL: https: //CRAN . R-project . org/package=

RWsearch.

Kosmidis, Ioannis (2019). cranly: Package Directives and Collaboration Networks in CRAN.
URL: https://CRAN.R-project.org/package=cranly.

R Core Team (2020). R: A Language and Environment for Statistical Computing. Vienna,
Austria. URL: https://www.R-project.org/.

Rinker, Tyler W (2018a). lezicon: Lezicon Data. Buffalo, New York. URL: http://github.

com/trinker/lexicon.

— (2018b). textstem: Tools for stemming and lemmatizing text. Buffalo, New York. URL:
http://github.com/trinker/textstem.

Silge, Julia and David Robinson (2016). tidytext: Text Mining and Analysis Using Tidy
Data Principles in R. DOI: 10.21105/joss.00037.

50

https://CRAN.R-project.org/package=visNetwork
https://igraph.org
https://CRAN.R-project.org/package=cranlogs
https://CRAN.R-project.org/package=RWsearch
https://CRAN.R-project.org/package=RWsearch
https://CRAN.R-project.org/package=cranly
https://www.R-project.org/
http://github.com/trinker/lexicon
http://github.com/trinker/lexicon
http://github.com/trinker/textstem
https://doi.org/10.21105/joss.00037

7 Appendix

Packages Authors Task Views Packages assigned Median packages Median author

to Task Views per author per package

18966 27873 40 3423 1 2

Table 3: Summary of CRAN (20*" February 2022)

Packages Authors Task Views Packages assigned Median packages Median author

to Task Views per author per package

19018 28023 36 3514 1 2

Table 4: Summary of CRAN (4% April 2022)

51

Task Views 20th Feb 2022 4th April 2022

Packages Authors Packages Authors

Bayesian 138 385 223 624
ChemPhys 81 174 79 165
ClinicalTrials 59 142 59 144
Cluster 109 310 108 309
Databases 37 85 42 94
DifferentialEquations 28 116 28 116
Distributions 249 565 266 614
Econometrics 140 348 144 358
Environmetrics 91 363 91 365
ExperimentalDesign 107 201 115 216
ExtremeValue 24 56 39 92
Finance 166 424 166 429
FunctionalData 42 121 43 123
Genetics 21 125 - -

GraphicalModels 32 108 31 104
HighPerformanceComputing 87 307 84 305
Hydrology 101 253 101 256
MachineLearning 101 488 102 493
Medicallmaging 23 50 33 54
MetaAnalysis 152 337 160 359
MissingData 165 584 213 737
ModelDeployment 32 160 32 149
Multivariate 110 362 - -

NaturalLanguageProcessing 54 111 54 112
NumericalMathematics 115 267 115 268
OfficialStatistics 131 355 131 319
Optimization 130 306 135 321
Pharmacokinetics 18 51 30 106
Phylogenetics 81 276 - -

Psychometrics 239 545 232 535
ReproducibleResearch 100 446 102 518
Robust 58 140 60 143
SocialSciences 7 252 - -

Spatial 174 544 198 608
SpatioTemporal 85 293 88 299
Survival 247 276 248 580
TeachingStatistics 44 192 45 197
TimeSeries 342 786 344 798
Tracking 45 134 o1 158
WebTechnologies 199 403 203 429

Table 5: Number of packages and authors in each of the snapshots. The Task Views
in red are those that were archived during the transfer process of the CRAN Task
View initiative from R-Forge to GitHub.

Task Views Proportion of Average Distance
Largest Component (%)

Bayesian 479 3.8
ChemPhys 66.1 3.7
ClinicalTrials 27.8 2.3
Cluster 56.3 3.5
Databases 89.4 2.4
DifferentialEquations 87.9 2.8
Distributions 62.5 3.6
Econometrics 72.9 2.8
Environmetrics 78.4 3.1
ExperimentalDesign 10.6 3.5
ExtremeValue 53.3 3.0
Finance 69.7 2.8
FunctionalData 22.8 1.8
GraphicalModels 67.3 2.5
HighPerformanceComputing 88.2 3.0
Hydrology 37.1 3.5
MachineLearning 86.6 3.1
Medicallmaging 51.9 2.1
MetaAnalysis 27.3 3.8
MissingData 64.6 3.5
ModelDeployment 95.3 2.7
NaturalLanguageProcessing 90.2 3.6
NumericalMathematics 82.8 2.9
OfficialStatistics 59.2 3.8
Optimization 68.5 3.4
Pharmacokinetics 59.4 2.2
Psychometrics 61.9 3.3
ReproducibleResearch 91.1 2.8
Robust 69.9 2.6
Spatial 82.4 3.2
SpatioTemporal 69.9 2.7
Survival 50.5 3.8
TeachingStatistics 93.4 2.7
TimeSeries 61.5 3.9
Tracking 22.2 3.1
WebTechnologies 83.0 3.0

Table 6: Size of the largest component as a proportion of the total number of
authors in each subnetwork. And the average geodesic distance between authors.

JYSLI 0} 9Jo] WOIJ IOPIO SUISLIIIDP UL ‘SON[RA SSOUUOMID(PISI[RULIOU }$0SIe] Ym sioyine oAy doJ, :, 9[qr],

(0°0) orpmisy
(10°0) wesuor uey
(70°0) Sunpoy £qaf,
(L0°0) IownER(Ueg
(20°0) UOSUOAR)S IR
(c0"0) puearg 1080y
(c0°0) Aordry wenrg
(70°0) ruioy 3y
(20°0) weysPIA\ Ao[peq
(70°0) U0SZHIqOY IopURXITY
(20°0) P1ONAPPPH 1A
(c0°0) Aordry werrg
(70°0) 11190qEPPH T
(90°0) ueypeIRA 1ARY]
(81°0) Toquir souueyo[
(80°0) uorjerodIo)) HOSOIIN
(€0°0) w310 WO
(10°0) Wo1TRg WIOOTRI
(0) woproy stay)
(90°0) IO[Y2RRIN U]
(20°0) dereyoels ydesor
(L0°0) BISWOLH e

(0°0) Aewsy 9801
(10°0) MYUOZSIOY [oTUR(]
(g0°0) 210D g
(60°0) sto[IOZ, WPV
(£0°0) Aoquny sewor T,
(90°0) ToUWNG [ORYDIIN
(G0"0) WSO 19ZPH]

(G0"0) ®eIOIIRG-URI|IRS SBIFRIN

(80°0) oery weN
(70°0) ruioy 3y
(G0°0) I9TPL MOYIRIY
(90°0) uURWSIO] JRIO)
(G0°0) Aordry uerrg
(60°0) @100 U
(81°0) Moudg Yrouuey|
(Z1°0) To[syeH [oRYDIN
(70°0) ToqpoRy UIIEly
(T0°0) MwIoTp\ N wojuaIg
(20°0) YIIYAN TOpURIE
(20°0) 910D ¥
(20°0) 1308porg praeq

(80°0) PUR[IT OPAOH URIISLIY]

(90°0) ure[IOqUIRY)) 33008
(20°0) ewsoqoq 10zpg]
(G0°0) 10[yooRIN UBIRI
(1°0) Wwimi [repuey
(70°0) 10%[0g uog
(80°0) 131°NqPPPA I
(L0°0) wreyoIp\ Ao[peH
(0°0) 210D ¥
(60°0) orxX myIx
(¥0°0) 210D g
(90°0) woss[Ies[O SyeIN
(L0°0) IO[Y2ORIN UIMIRIN
(0°0) Sw[PZ WPy
AH.OV siae(V Aqjouut,
(61°0) Aordry werrg
(L1°0) oPmySY
(¥0°0) 210D 1
(10°0) ALoumry sewoyJ,
Quo.ov [[[oUOSn\ uyof
(80°0) Suey, weng
(30°0) soqry ureg
(60°0) [e¥1eNqEPPA Y11

(T°0) stpny qog
(20°0) wLLIgQ Ysof
(c0°0) YruIoy 2amy]

(21°0) 210D g
(g0°0) 210D ¥
(80°0) Suo(mySuery
(L0°0) 210D ¥
(50°0) 8817 am)
(1T°0) JuOULIO] 1191
(G0°0) sw[OZ, WY
(20°0) suB{IA\ umsnL
(T°0) YruIopy 3my
(¢0°0) 1duway, seryiyeIy
(1T°0) oy 3any
(¢z0) sPplip uer
(61°0) MTIOR 4y
(G0°0) UPLIPOOY) TG
(20°0) 210D ¥
(g0°0) mooqe], usjsIRY]
Q.ov Irewstog YdojsLy))
(¢0°0) urefzoqurer) 33008
(¢1°0) Suey, weng

(1°0) ureyspIpy Lorper
(z0°0) BUWNG [SRYDIN
(G070) wewpuikyy qoy
(91°0) weypIAy Aopey
(0°0) To[UPoRIN UITRN
(60°0) 210D U
(81°0) puearg] 1080y
(12°0) Io[ooRIA UIIIRIA
(£1°0) ssoy wreoN
(20°0) yoLIPOOX) USY
(60°0) Louua(1
(11°0) 1°1oNqEPPH S
(61°0) 210D ¥
(117°0) To[yooRA UI)IRIN
(€2°0) MWIOY a3y
(1€°0) Suey, weng
(20°0) [e¥IONqEPPA YU
(€0°0) w307 WO
(81°0) wop4er) uor
(8€°0) 1°1PNqEPPH S
(g0°0) euIseqa I0zpy
(61°0) 210D ¥

SO1307OUYI9 T, AN
suryoed],

SOLIOGOWIL],
SO1)S19RIGBUID.IT,
[BAIAING

[eroduay o1yedg
reryeds

ISNqoY
[0Ie0s0o[qIonpoIdoy]
SOLIJOWOYDAS
SOTJOUL{0ORULIRY J
uoryezrrdQ
SOISTIRISTRIOO
SOT)RRY YR [RILIOTITL \]
SurssedoIJodensuereInieN
yuotAo[do([OPOIN
R)R(TSUISSTIA]
STSATeuyRIOIN
SULSRW[RITPSIA
SuIULIROTOUIYIRTA]
AB0[0IpAY
surnduro)90uRULIOLID JUSTH

(20°0) soyeq se[sno(q (90°0) wreyspIp Lo[pey (90°0) AsMAL N [oaed (GT°0) IO[Y0ORIN UIIRIN (c1°0) 109[0g UPY spepoN[eorydery)
(0) nuesorurer)) uwerrdr) (10°0) wmeqIepa)) euOf (10°0) 10{0OH so[Ir) (10°0) uaaaIx) eluog (10°0) oery on)R (J[RUOI}OUN,]
(¥0°0) Yo enysof (¢0°0) 210D ¥ (L0°0) Suen(oydoistiy) (80°0) [PMONAPPPH A (T°0) IO[YORIN UIMIRIN ooueuL{
(¥0°0) weopeq auourg (¢0°0) zuop) wery (60°0) 210D g (80°0) wosuaydalg 291y (TT°0) IO UILIRIN ON[BAOUIOIIX]
(0) Surdwoory) oLy (0) serqeuA 11 (0) e1reSuo(y e[(0) uesue[110891y (10°0) T Suex uSIso([RpuomLIOdX]
(¢0°0) YruIoy 3amy| (20°0) TO[YOORIN UIIIRIA (1°0) oxeeT Por (F1°0) 210D Y (¢1°0) I0%[0g uog SOLIOUIUOIIAUG]
(¥0°0) IO[S13S NLIYYFRIN (¥0°0) 10M[0g uog (€0°0) puearg 1080y (L0°0) 210D Y (¢1°0) sw[Z WPy SOLIJOUIOU0T]
(70°0) storoz wpy (70°0) Suein(g oydosstar) (90°0) Tox[0g uog (L0°0) TO[UIRRIN UTYIRIN (60°0) 210D ¥ suonnqLIsIq
(1T°0) ofotseq 0033eN (21°0) PWONqEPPY I (6T°0) uosuyor) uoAMNg (91°0) poop N uourrg (LT°0) wreyspIpy £o[pep suoryenbyrenyuLIoHI]
(11°0) Aosporq uysny (11°0) wreyspipy Lo[pey (¢1°0) swoQ w0 (€1°0) Suey, weng (12°0) orPmISy soseqeye(]
(G0°0) UOSTT YILIPALL] (G0°0) ANSYALIY N [oA®Rd (60°0) 210D g (60°0) TO[UPRIN UTIRIN (60°0) SMUIOH 13 1)sN[D)
(10°0) serqewaA g (10°0) sw[PZ Wy (10°0) AopumT sewoy, (10°0) soqeT mopQg (20°0) wIoIOY UeYsIO, S[eLLT [edTuI])
(90°0) seyo[ag eIpNE[) (1°0) s083rT amp) (1T°0) orpmISy (¢1°0) Tov[0g wOg (61°0) 210D g sy guioy
(€0°0) UPLIPOOY) UDE (70°0) wewpudy qoy (70°0) puearg 1080y (70°0) stwo[Io7, wiydy (60°0) 210D ¥ uersofeq
srony reryuenpuy ¢ dog, SMOTA 3SBL

g0z 1Ay Jo y,F o3 uo uoye)y
joysdeus Fursn) “JYSLI 01 JJO] WOIJ IOPIO FUISROINGD U] "MIIA YSR], Uoro uryym sonirqeqord pajorpaid 3sedre yim sasexped ¢ doJ, :g 9[qe],

dyreyey I1A1p0dsAury eorqndy QAITUZ0)RINZY ueIpl SOIZOTOUTD9T, A

SIr Surjood 1S9 PRg IOV SAYJ 899GV IqSYSIy sursoel],

NNV o1oARAN ASI, dYI01eARAN Y ASIO[OARAN RUILIY JO[OARAN SOLIOGOWIL],
HIAVSY ADIAAY Nd3 caIsey Ispur SO1ISIRIGFUORIT,
sofedOTd qromeI)S Su9HJor) AINGXIIA[SoARY OPTJINIRAIAINS [BAIAING
sjooradiejury) IApurs OSIIN Y UIE) DAL ORI [eioduay o1pedg
Tesimsur ooyrenedg ordiogsern SIOOT.STH YSureIsaq reryedg
AemEA00IT aomwsed oSy OIINY Jrurdd snqoy
UMOPIST] 9[qe).LI SjL plchlelend IQTUYZO o[qe)o3 yoIessayo[qonpordoy
o[JeIep ULITO 1Ty mM3I0)Xop s SOLIIOWOYDAS J
posodx qreiredxud IADNY I1Aeqdew wisqdMd SOTJOUI{OORULIRY J
ndoruuidnid 10y qrIeusppouwr 10y Soxdpenbuidnid-y0oy euwreqereusnid 10y Iopopouurd] uoryezrundQ
osewt elR([Srgsurdureg doias s3eIpAas sojewrysyuridures SOTIST)RIGTRIII ()
uRIPORIY b81qz03 YIS Aom uepiof SOTYRUIO JRTA[[ROLIOUITLN
ST} Y DOAZO0P JuouIuSIR)X09 XST DOAZPIOM Surssed0IJodensurreInieN
AoDyRIR([UI[RO I Jareds IquSeu Kordoqroquunyd IL)omnumd JuowrAo[do(J[oPOIN
19338001l WIUI] [nesTNop oreuenyndur RJTII R)R([SUISSI
10309dSUIS VA D) UOI}eNUd} R IVININD IVID I)STPUIIS SISATRUYRIDIN
em Iopo[wronu quo ebrrury Surgew[eorpayy
depuonyred o[ury ossefed 1OULI0D UOI10IPaIJ[esne) JURLIRAU] SuruIeoTOUIYORIA
M[0OT,0IPAY JoIpAyqp SPOOPAIUNOD A3010PAYSHSD jrooqung AB0[0IpAH
odeysoaiyde reqd pueIpIy RIISI[O TORUUSI AY Surnduo))9duRULIOLIS JUSTH
ydeinssed oyod Iup QI3 10) 109[OS]N D) S[ePONTeoTydRIn)
BAOURJOI S)IRYOUN P} 90UQIDJU[RULIOJUOD aA10ders; Aurys'punjol eJR(J[RUOIIOUN]
HOYVDIW WHSHIOPHOOFI0] orjoyyrod SOT[OJ310d IoTH Amotuojouou QouRUL{
AIST[TISIP 9[qeAIRWNGIXT, Ul MITADYRIR(UID SIASO[goIJauaryed S[13 N UI[O ON[RA QU)X
1d¢1dO 1Loav padojoe; mugyd o8e)sgues ugrso([reusmrodxsy
oouRISIPY PUIAI ugIsopIoos TROUI[ID9S gpHuedo SOLIOUIUOIIAUN
1SBIAIOAT AUO! XUVAD Hdr pdurzy SOLIPMOUOY
poo3 RUIWIRSI[[O LIojul SIopIO w[JIN SUOIIN(LIIST(]
19519 9P SISATeURIN JSd UoIOT,I IoUOPIRr)1S9], aaTogdAq suo1 en by TRIIUOIOHI(]
AronbApry sgorued yoedgol (pozixe) Teqqrol soseqele(]
IsnHeu XINATTRIN NS XTI SURIT, YR XINATTRIN YRIN hELTSITN o)
POXTIN1I0)) surTemg A JueLIe A SUTRMG A IOUSTSO(JRURIPOIN YordPOINADIN S[RLLT,[ROTUI[))
usIofjuenb[TVIN siodoygoadg RvIR([XI[JIoNNIgpeal X([rpeor RIR(J[UXZN PRI SAyJuoy))
1exSeqRIq qoHorqess prab Qysedeqg 1504Rq ueIsoAed
SUOT)RPULWITI0II MITA Yse], ¢ doT, SMOTA JSRT,

95

8 Supplemental Material

Alongside this report I have uploaded a self-contained folder containing R code and data
to create all of the figures created in this report. This folder has a R project file (.Rproj)
that can be used to set the working directory, therefore the code should run wherever the
folder is stored. In order to do this, whenever running script first open the .Rproj file.
To make sure the working directory is set correctly in RStudio there is the option to set
the working directory as the project directory. The folder also contains all of the code
regarding the analysis of the text data and the construction of the multinomial regression
model.

56

	Introduction
	The Comprehensive R Archive Network
	Package Directive and Author Collaboration Networks
	cranly R Package
	Task Views
	Description of the CRAN Task View Initiative
	Transfer of the CRAN Task View Infrastructure to GitHub
	Storing Task View Snapshots

	Notation

	Exploratory Analysis of the Task Views
	Aim
	Preliminary Analysis
	CRAN on the 20th of February 2022
	cranlogs R Package
	CRAN on the 4th of April 2022

	Connectivity of the Author Subnetworks
	Influence of the Authors

	Similarity of Task Views
	Aim
	Measuring Similarity of Task Views using Package Dependencies
	Defining the Similarity Measure
	Examining Results
	Comparing Results to the Decisions Made by the CRAN Task View Editors

	Enhancing the Similarity Measure with Task View Description Text
	Aim
	Method to Measure Text Similarity
	Combining Similarity Measures

	Task View Recommendations
	Aim
	Multinomial Logistic Regression
	Model Fitting
	Data
	Features
	Model Tuning
	Model Accuracy and Recommendations
	Feedback from Maintainers

	Discussion and Conclusion
	Similarity of Task Views
	Task View Recommendations

	Bibliography
	Appendix
	Supplemental Material

