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1 Introduction

Our goal is to represent the joint distribution over some set of random variables in the most compact
way possible.

We can measure the “compactness” of a representation of a joint distribution, by counting the
number of independent parameters that are required.

Independent parameters, are parameters whose values are not determined by others.

For example, if we have n random variables, X1, . . . Xn, that represent n independent coin tosses,
we can factorise the joint distribution in the following way:

p(x1, . . . xn) =
∏
i

p(xi) (1)

These are binary random variables; therefore, we can determine the probability for any of the 2n

possibilities, (x1, . . . xn), using n parameters. If we did not factorise the joint distribution, into the n
probabilities, then we would require 2n−1 independent parameters. Because, for every combination
of possibilities, (x1, . . . xn), we would need to denote the probability apart from one as we would be
able to evaluate it using that the probabilities must sum to one.

2 Bayesian Network Representation

We first give an informal high-level definition of a Bayesian network (BN), and we then provide
formal definitions afterwards.

A Bayesian network is a pair (p,G). Where p is a probability distribution over a set of random
variables, and G is a DAG. The DAG G can be viewed/constructed in two different ways:

1. Representing a set of conditional independence statements that are held by p.

2. A way to present the parameterisation of the joint distribution p.

It then turns out, that when constructing G using either perspective, the properties induced from the
graph in the alternate perspective still hold. For example, if we start from a valid parameterisation
of p, then use this to create a DAG. The set of independence statements induced from this DAG
will hold for p.

We now will define both of these perspectives formally, and start with giving some core definitions
related to graphs.

Definition 1. Graph terminology
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DAG A directed graph G = (E, V ), that has no directed cycles.

Parent/Children If there exists a directed edge from node v1 ∈ V to v2 ∈ V then v1 is a
parent of v2, and v2 is a child of v1.

Descendant If there exists a directed path from v1 ∈ V to v2 ∈ V then v2 is a descendant
of v1. The children of a node is therefore a subset of its descendants.

We now look at the first perspective (1.) of a Bayesian network structure G. Below we provide
a definition for how a DAG, where each node represents a random variable, encodes conditional
independence statements.

Definition 2. BN structure - encoding conditional indpenedence statements

A Bayesian network structure G is a DAG whose nodes represent random variables X1, ..., Xn.
G encodes the following set of conditional local independence assumptions, called the local inde-
pendencies, and denoted by IL(G):

(Xi ⊥ NonDescendantsG(Xi)|ParentsG(Xi)) ∀Xi ∈ V G (2)

Local independencies are sometimes referred to as local Markov independencies.

The independence statements encoded by a graph, and how it relates to the distribution is an
important point; therefore, we formalise it here now. If we let I(p) denote the set of independence
statements that hold in p, we say that G is an I-Map for p if IL(G) ⊆ I(p). In other words, if G is
an I-Map for p then any independence that G asserts must hold in p.

We now look at the second perspective (2.), and provide a definition for howshow how G can be
used to present the parameterisation of the joint distribution.

Definition 3. BN structure - Factorisation of joint probability over G

Let G be a BN structure over the variables X1, . . . , Xn. We say that a distribution p, for these
random variables, factorises according to G if p can be expressed as a product:

p(X1, ..., Xn) =

n∏
i=1

p(Xi | ParentsG(Xi)) (3)

We give an example in the Appendix (A.1.2), that shows how we can use the factorisation of a
distribution presented by a graph to decompose a conditional distribution.

Theorem 1. Structure G represents both conditional independence statements and fac-
torisation of p

Let G be a BN structure for random variables X1, . . . , Xn , and let p be a joint distribution over
the same space.

G is an I-Map for p ⇐⇒ p factorises according to G

We now finally give the formal definition of a Bayesian Network.
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Definition 4. Bayesian network

A Bayesian network is a pair B = (G, p) where p factorizes over G, and where p is specified as a set
of CPDs associated with G’s nodes.

So far, we know that if we have a Bayesian Network, then the joint probability density p must
satisfy the local independencies of G. By the (⇐) direction of Theorem 1.
But are there other additional independencies that can be defined from the graph G that also hold
for p?

Definition 5. d-separated nodes

Let X,Y,Z be three sets of nodes in G. We say that X and Y are d-separated given Z, if in the
skeleton of the moralised ancestral graph of (X,Y,Z) there exists no paths from the node set X to
the node set Y that does not include a node from the node set Z.

Or more concisely: Z separates X and Y in the skeleton of the moralised ancestral graph of
(X,Y,Z).

Definition 6. Global Markov Independencies

We name the set of independence statements, I(G), that are induced by the d-separation theo-
rem, the global Markov independencies.
What we mean by induced is that if, Z d-separates X and Y, then we say X ⊥ Y | Z

The local Markov property is implied by the construction of a Bayesian network, but it is also a
special case of the d-separation theorem.

We have given some “extra” independence statements encoded by G, but have not said whether
these actually hold for the distribution that factorises over G. The next theorem gives us exactly
that, independencies in I(G) are those that are guaranteed for every Bayesian network with G as
its graph.

Theorem 2. The d-separation Theorem

If a distribution p factorises according to G then I(G) ⊆ I(p)

However, the converse of Theorem 2 does not hold in general, an example is shown in the Appendix
(A.1.1). In other words, for a BN the independence statements induced by the d-separation theorem
do not in general contain all of the independence statements of its joint distribution.

In the above definitions and theorems, we have shown if p factorises over G we can derive a set of
independence statements. The question now is, when given a distribution p to find a graph G whose
set of independence statements are as close as possible to the independencies in p. This is covered
further in chapter 3.4 of Probabilistic Models by Daphne Koller and Nir Friedman.

The ideal case would be to have a graph that encodes all of the independence statements of the
distribution. A graph K is called a perfect map (P-map) for a set of independencies I if I(K) = I
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3 Undirected Graphical Models

BN structures rely on a choice of direction, which can make it difficult to encode certain sets of
independence statements. Using an undirected graph could make it easier.

Markov networks allow us to represent independence statements without selecting a direction to the
influence. A Markov network structure is an undirected graph, where the nodes represent
the random variables.

In Bayesian networks the directions in the structure told us how to factorise p, in terms of conditional
probabilities, which are not symmetric. In a MN structure, as it is undirected, the parameterisation
cannot be directed. We therefore use factors instead of conditional probabilities.

Definition 7. Factor

For a set of random variables X, a factor is defined as a function from the values that the random
variables can take to R. The set of variables, X, that the factor is defined for, is called the scope of
the factor.

Factors generalise probability distributions, for example a joint distribution over X is a factor over
X. We can write the chain rule for conditional probabilities as a product of factors. Usually for
Markov networks we use factors that map to the positive real numbers R+.

The product of factors is defined in a specific way, so that taking the products makes sense in terms
of the random variables interacting.

Definition 8. Gibbs distribution

A distribution pϕ is a Gibbs distribution over the set of random variables X = {X1, . . . , Xn}
parameterized by a set of factors ϕ = {ϕ1(X1), . . . , ϕK(Xk)}, with Xi ⊆ X, if it is defined as:

pϕ(X1, ..., Xn) =
1
Z p̃(X1, ..., Xn),

where p̃(X1, ..., Xn) = ϕ1(X1) × ϕ2(X2) × · · ·×, ϕK(Xk) is an unnormalised measure and Z is the
normalising constant.

We can think of each of the individual factors as contributing to the joint distribution. And, if we
have a factor that includes two random variables X and Y then we are introducing an interaction
between them. Therefore, it makes sense that when we define MN structures later that all of the
rvs in the scope of a factor should have an edge between them.

Just as we did in Bayesian networks, we want to express the parameterisation of a distribution using
a graph structure, but we use an undirected graph H. Analogous to Definition 3, we have:

Definition 9. Markov network factorisation

A Gibbs distribution pϕ, with ϕ = {ϕ(D1), . . . , ϕ(DK)} factorises over a Markov network H, if each
Dk is a complete subgraph/clique of H.

A clique is subgraph where every node is connected to each other.

So given a Gibbs distribution pϕ, we can then give a Markov structure H so that the distribution
factorises over it. Now, every complete subgraph is a subset of a maximal clique. So we can reduce
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the number of factors in the parameterisation by having factors only for maximal cliques. This
parameterisation will then still factorise over H. I give an example showing this in the Appendix
(A.2.1).

In the Appendix (A.2.5) we give an example of a distribution that factorises over an MN structure.
In addition, in the Appendix we define and give an example of a pairwise Markov network (A.2.2).

Definition 10. Global Indedependencies for Markov networks

If a set of nodes Z separates X and Y in H, then X ⊥ Y | Z. Define the global independencies as:

I(G) = {(X ⊥ Y | Z) : sepH(X;Y | Z)} (4)

In the Appendix (A.2.4) we give an example of going from a set of conditional independence state-
ments to an MN structure.

Theorem 3. Structure H represents conditional independence statements and factori-
sation of p

Let H be a MN structure for random variables X1, . . . , Xn , and let p be a distribution over the
same space.

H is an I-Map for p ⇐ p is a Gibbs distribution that factorises over H (5)

H is an I-Map for positive distribution p ⇒ p is a Gibbs distribution that factorises over H (6)

The direction (6) is known as the Hammersley-Clifford theorem. A positive distribution is one in
which the probability assigned to measurable sets, apart from the empty set, is strictly greater than
zero.
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A Appendix

A.1 Bayesian Networks (BN)

A.1.1 Example showing that I(p) ̸⊂ I(G)

Suppose that we have two random variables Y and X that are independent. A possible Bayesian
structure is:

X

Y

We clearly cannot deduce that X and Y are independent using the d-separation theorem. The
skeleton of the moralised ancestral graph will be the undirected version of the graph above and
therefore X and Y will not be separated.

A.1.2 Redundant Feature in Classification Task

If we have the random variables X1, . . . , Xd and Y with an associated Bayesian network with G as
given below:

Y

X1

X ′

X2
. . . Xd

We can write the conditional distribution for Y given the other variables as:

p(Y | X ′, X1, . . . , Xd) =
p(Y,X ′, X1, . . . , Xd)

p(X ′, X1, . . . , Xd)
(7)

=
p(Y )p(X ′ | X1)

∏d
i=1 p(Xi | Y )

p(X ′, X1, . . . , Xd)
(8)

∝ p(Y )

d∏
i=1

p(Xi | Y ) (9)

We use that p factorises over G to get (8).
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Now if we wanted to perform classification for the outcome variable Y , using the rest of the random
variables as features, we would look for:

argmax
y

p(Y = y | X ′, X1, . . . , Xd) (10)

And we can see from (9), that we can ignore X ′ completely to complete this classification task.

A.2 Markov Networks (MN)

A.2.1 Different clique potentials

Factors that parameterize a Markov network are often called clique potentials.

Lets say we have a Gibbs distribution:

pϕ(X1, ..., X4) =
1

Z
ϕ1(X1, X2, X3) · ϕ1(X2, X3, X4) (11)

A MN structure H, such that pϕ factorises over it is given by:

X1

X2 X3

X4

Every complete subgraph is a subset of some (maximal) clique, so in general we can reduce the
number of factors in our parameterisation by allowing factors only for maximal cliques.

So in this example we can just provide a factor for the maximal clique over the nodes X1, . . . , X4,
then H will still be a valid MN structure.

We can get this single factor ϕ(X1, X2, X3, X4) by taking the factor product of ϕ1 and ϕ2.

Definition 11. Factor Product

Let X,Y,Z be three disjoint sets of variables, and let ϕ1(X,Y), ϕ2(Y,Z) be two factors. The factor
product ϕ1 × ϕ2 is defined to be a factor:

ψ(X,Y,Z) = ϕ1(X,Y) · ϕ1(Y,Z) (12)
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Although we can do this to reduce the number of factors used to parameterise a MN structure, this
obscures the structure that is present in the original set of factors.

This example shows that starting from a MN structure, there are options for how many factors we
want to use to parameterise it. Or in other words how “fine” or “coarse” we want the structure to
be.

A.2.2 Pairwise Markov Network

Related to the previous section (A.2.1), a subclass of Markov networks are pairwise Markov net-
works. These are distributions that can be parameterised by factors that are over at most two
random variables.

A common example of a pairwise Markov network, is one that can be represented by a grid.

Lets say we had a distribution that could be parameterised in the following way:

pϕ(X) =
1

Z

∏
(i,j)∈ϵ

ϕi,j(Xi, Xj) (13)

Where ϵ = {(i, j) : |i− j| ∈ {1, 3}, i < j} (14)

A H structure that pϕ will factorise over will be given by:

X1 X2 X3

X4 X5 X6

X7 X8 X9

A.2.3 Graphical Modelling - Senators Pairwise Markov Network

Problem description:

• 100 senators

• Dataset of rollcall votes for each senator. Vote is either yes or no.

• Want to analyse dependencies between senators

• x(i) ∈ {−1, 1} is a vote for senator i.

We model the joint distribution p(x(1), . . . , x(100)) as a type of pairwise Markov network. Precisely,
we assume all factors are over pairs of variables.
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Therefore we have that:

p(x(1), . . . , x(100)) ∝
∏

u,v∈E
g′u,v(x

(u), x(v)) (15)

For some edge set E, which determines which pairs of random variables have a corresponding factor.

Now we make some further modelling assumptions, and assume that

g′u,v := exp(wu,vx
(u)x(v)) (16)

For all u, v, we can now write:

p(x(1), . . . , x(100);W ) ∝ exp(
100∑
u=1

∑
v>u

wu,vx
(u)x(v)) (17)

Now if we want to carry out inference, but for an individual senator we can look at the conditionals.

p(x(1) | x(2) . . . , x(100);W ) ∝ exp(
100∑
u=1

∑
v>u

wu,vx
(u)x(v)) (18)

∝ exp(
100∑
v=2

w1,vx
(1)x(v)) (19)

The normalising constant for the conditional distribution will be given by:

∑
x(1)∈{−1,1}

exp(
100∑
v=2

w1,vx
(1)x(v)) (20)

Therefore we get that conditional probability distribution is given by:

p(x(1) | x(2) . . . , x(100);W ) =
exp(

∑100
v=2w1,vx

(1)x(v))

exp(
∑100

v=2w1,vx(v)) + exp(
∑100

v=2−w1,vx(v))
(21)

= σ(x(1) · (2
100∑
v=2

w1,vx
(v))) (22)

Where σ is the sigmoid function.

Now, if we observe a dataset D := {xi}ni=1, where xi is the votes of the 100 senators on bill i.

The likelihood is given by:
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p(x(1) | x(2) . . . ,x(100);W ) =
n∏

i=1

σ(x
(1)
i · (2

100∑
v=2

w1,vx
(v)
i )) (23)

Therefore, this is equivalent to logistic regression.

A.2.4 Conditional independence statements to MN structure

Suppose we have the set of random variables: {Math, ML, SM1, Python}, and a probability distri-
bution that can be factorised as:

p(Math, ML, SM1, Python) ∝ ϕ1(Math, SM1)× ϕ2(SM1, ML, Python)

You can show that if we have three disjoint subsets X,Y,Z with X = X ∪Y ∪ Z

p(X ) = ϕ1(X,Z)× ϕ2(Z,Y) ⇐⇒ X ⊥ Y | Z (24)

Therefore from our factorization we have the following conditional independence statement:

Math ⊥ Python, ML | SM1 (25)

Then using decomposition and weak union we have the following conditional independence
statements:

Math ⊥ Python, ML | SM1 (26)

Math ⊥ ML | SM1 (27)

Math ⊥ Python | SM1 (28)

Math ⊥ ML | SM1, Python (29)

Math ⊥ Python | SM1, ML (30)

The following undirected graph, encodes all of these statements.

Ma ML

PySM

A.2.5 Factorisation of distribution to MN structure

Now if we use the factorisation of the joint probability distribution over the random variables
{Math, ML, SM1, Python}
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p(Math, ML, SM1, Python) ∝ ϕ1(Math, SM1)× ϕ2(ML, SM1, Python)

To create an undirected graph, such that the distribution factorises over it, we get:

Ma ML

PySM

Can see that the graph is identical to the graph generated to encode the independence statements.
This is an example, showing Theorem 3 in action. We first constructed the graph so that it encoded
the independence statements, and then we created a graph so that the distribution factorises over
it.
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