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1 Decision Making an Introduction

1.1 Introduction

The general set-up for supervised learning is that we have random variables X and Y and we want
to be able to estimate a function f that predicts y from x. Where y and x are realisations from
these random variables, in this report we will have x ∈ Rd.

Within supervised learning we have two different types of problems: regression and classification.
Regression problems are those where the outcome variable Y can take any value in the real numbers,
classification problems are those when the outcome variable takes values in a finite discrete set.

We choose our prediction function f by finding the function that minimises E[L(f(X), Y )], where L
is a loss function. This expectation is over the joint distribution of X and Y , and is often referred
to as the risk of a prediction function f . The choice of loss function can effect our choice of f ,
for example when using the squared error loss the risk is minimised when we select f(x) = E[Y |
X](A.1.1). Alternatively, if we use the absolute loss function then the optimal prediction function
is f(x) = median(p(Y | X))

In practice, we do not know the joint distribution that is used to calculate the expectation, but
we have a dataset D := {(xi, yi)}ni=1 which are realisations from the unknown joint distribution.
Instead of calculating the risk we can use an empirical estimate of the risk given by 1

n

∑
L(yi, f(xi)).

1.2 Least Squares (LS) Regression

LS regression is the estimate of the prediction function that minimises the empirical risk with respect
to the squared error loss. We minimise the sum of squared errors over observations in D0 ⊆ D which
we refer to as the training set.

The LS problem is therefore defined as:

argmin
f

∑
i∈D0

(yi − f(xi))
2 (1)

The linear LS problem is a special case of the LS problem, in linear LS the prediction function is
a linear function of both the predictors and the weights. This problem can be formalised as:

WLS : = argmin
w

∑
i∈D0

(yi − f(xi,w))2 (2)

f(x;w) := wT
1 x+ w0 (3)
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In this case we have a closed form solution for WLS(A.2.1).

The choice of the squared error loss function can be motivated by taking a probabilistic approach, by
making an assumption on the conditional distribution Y | X. More precisely, if we assume (xi, yi)
for i = 1, . . . , n are i.i.d samples with yi|xi;σ ∼ N(f(xi;w), σ2), then the MLE of w is equivalent
to solving (2) (A.2.2).

The models given by (3) are restricted to only fitting straight lines. However, we can extend
this class of models to look at linear combinations of non-linear transformations of the input vari-
ables. We do this by transforming the input x using a feature transform ϕ : Rd → Rb, and using
f(ϕ(x);w) := wT

1 ϕ(x) +w0. These models are still called linear models as they are linear in terms
of w, and therefore still has the closed form solution given by (19) with X replaced by ϕ(X), but
now f(ϕ(x);w) can be a non-linear function of x.

If ϕ(X) is symmetric and invertible then the least squares closed form solution reduces to [ϕ(X)]−1yT

(A.2.3).

1.3 Over-fitting

To measure the performance of a prediction function at estimating the outcome variable, we need
to use data that the model has not been trained on. To carry this out, we can split our dataset into
a partition D = D0

⋃
D1. D0 is the set that we train f over and is referred to as the training set.

We can calculate the empirical risk using either D0 or D1. The empirical risk of f calculated over
the same set it is trained on is called the training error, and the empirical risk over D1 for f trained
on D0 is called the testing error. The difference between these two estimates is an estimate for the
generalization error of f .

If we look at look at a polynomial feature transform ϕ(x) := [h(x(1)), . . . , h(x(d))] with h : R → Rb

h(t) := [t1, . . . tb], then ϕ(x) ∈ Rdb which implies that w1 ∈ Rdb. If we increase b this causes the
training error to reduce, because we are testing the prediction function on the same data we trained
it on. However, the training error will start to increase as we increase b.

This problem of the generalization error becoming large as the model becomes too flexible is known
as overfitting.

1.4 Regularization

One strategy to avoid over-fitting is to add a penalty term to the objective function which penalises
the vector of coefficients w becoming too large. One choice of measure for the size of w is the
squared euclidean norm, and can be formulated in the following way:

wLS-R := argmin
w

n∑
i=1

(yi − f(xi;w))2 + λwTw (4)

The solution for this problem is given by wLS-R = (XXT + λIp+1)
−1XYT (A.2.4)

We can tune for λ by selecting a λ that corresponds to a low testing error of the model. This can
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be done using a single validation set D1, or we can partition the dataset into more blocks. The
method of training a dataset on a part of a dataset then calculating the testing error using the rest
of the dataset is called cross-validation.

1.5 Bayesian Approach

So far we have taken the Frequentist approach and have been finding point estimates for the param-
eters in our models. In the Bayesian approach we now assume some of the parameters are random
variables, and we assign them a distribution, we call the distributions on the parameters the priors.
We can then use Bayes’ rule (6) with the priors and the data generating model (likelihood) to
update the probability distribution of the parameters after observing the dataset.

Bayes theorem for two events from a probability space is given by:

P(A | B) =
P(B | A)P(A)

P(B)
(5)

We also have Bayes theorem for the density functions for random variables X and Y

pX|Y=y(x) =
pY |X=x(y)pX(x)

pY (y)
(6)

1.5.1 Bayesian Linear Regression

In Bayesian linear regression we have the model yi = f(xi;w) + ϵ, and we assume ϵ is normally
distributed with mean zero and variance σ2. Moving towards a Bayesian approach, we now assume
w is a realisation from a random variable W, we call the probability distribution of this random
variable the prior on W. Here we assume the prior to be normal with mean zero and variance σ2

W.

If we assume the input data x := {xi, i = 1, . . . , n} are fixed, then using the Bayes rule we have
that:

p(w | y;x) ∝ p(y | w;x)p(w) (7)

We have also used here the notation y := {yi, i = 1, . . . , n}

An alternative assumption to get equation (7) would be for X to be independent of w.

Once we have the posterior p(w|D) we can take our estimate of w to be the one that maximises
the posterior distribution (MAP estimate), this is still a point estimate of w. Now if we take the
likelihood function and the prior to be normal, the MAP estimate of w is the same estimate as that
from ridge regression (A.3.1).

We have included a prior distribution for w, but once we have the posterior we have just calculated
a point estimate. We can instead calculate the predictive distribution, which is given by:
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p(ŷ | x, D) =

∫
p(ŷ | x,w)p(w | D)dw (8)

The solution for this integral can be found in the Appendix (A.3.2).

1.6 Binary Classification

Binary classification problems are a special case of classification problems, where the output variable
has just two classes, we will denote these as C1 and C2. Our prediction function f will now just
assign the input variables to one of these two classes, and therefore the rule will divide the input
space into two regions R1 and R2.

The classification problem can be split into an inference stage and then a decision stage. There
are different approaches to solving classification problems, in terms of how we carry out the inference
and then utilise this to come up with a decision rule.

Different Inference Strategies:

• Generative approach: Estimate the class-conditional probabilities p(x | Ck) for each class,
and the prior class probabilities p(Ck). Then use Bayes rule to find the posterior class proba-
bilities p(Ck | x). Once you have the posterior probabilities, you can then use decision theory
to determine a prediction function f .

• Discriminative approach: Directly estimate the posterior class probabilities.

Decision Theory

Once we have performed inference we can then use this to decide on a decision rule. Lets first look
at using the zero-one loss function, defined as L(f(X), Y ) := 1{f(X)̸=Y }.

If we have a decision rule f then the risk with this loss function (probability of misclassification) is
minimised if we have the decision rule f(x) = argmax

k∈{−1,+1}
P(Y = k | X = x) (A.4.1). Calculating the

risk requires us to know the joint distribution, in this case to get the optimal prediction function
we need the posterior class probabilities.

Minimising the empirical risk with respect to this loss function is equivalent to minimising the
number of misclassifications. But, we may want to do more than just minimize the number of
misclassifications. For example, if the consequences of a making a false negative outweighs that of a
false positive, we might want to introduce a higher penalty to making such a prediction. Therefore
we can use a loss function that assigns a higher cost to such misclassifications.
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A Appendix

A.1 Minimising Risk

A.1.1 Optimal prediction function under squared loss

We want to show that: argmin
f

E[(f(X)− Y )2] = E[Y | X]

E[(f(X)− Y )2] = E[(f(X)− f∗(X) + f∗(X)− Y )2] (9)

= E[(f∗(X)− Y )2] + E[(f(X)− f∗(X))2] + 2E[(Y − f∗(X))(f∗(X)− f(X))]
(10)

≥ E[(f∗(X)− Y )2] + 2E[(Y − f∗(X))(f∗(X)− f(X))] (11)

= E[(f∗(X)− Y )2] + 2EXEY |X [(Y − f∗(X))(f∗(X)− f(X))] (12)

= E[(f∗(X)− Y )2] + 2EX [(E[Y |X]− f∗(X))(f∗(X)− f(X))] (13)

Now if we let f∗(X) = E[Y |X] then we have that:

E[(f(X)− Y )2] ≥ E[(f∗(X)− Y )2] (14)

Therefore this risk of any other function is larger.

A.2 Least Squares Regression

A.2.1 Closed form solution to least squares regression

The solution of WLS := argmin
w

∑
i∈D0

(yi − f(xi,w))2 is given by (XXT )−1XyT .

Where X ∈ R(p+1)×n is the design matrix with columns given by the input vectors xi, with an
additional row of 1 which allows us to avoid including w0 in the calculations.

WLS = argmin
w

∑
i∈D0

(yi − xT
i w)2 (15)

= argmin
w

(YT −XTw)T (YT −XTw) (16)

= argmin
w

− 2wTXYT +wTXXTw (17)

From the second to third line we just removed terms that did not depend on w.
Now taking the derivative with respect to w, and setting to zero to find the stationary point we get:
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0 = −2XYT + 2XXTwLS (18)

wLS = (XXT )−1XYT (19)

If (XXT ) is not invertible then wLS is not defined.

This is the case, for example, when n < (p + 1) because then ∃ v ∈ Rp+1 such that we can write
the following. The reason being is that XT is a matrix with p+1 columns of size n. The dimension
of the column-space is therefore n, and by the fact that if you have more vectors than the size of
the dimension (p + 1 > n) of the vector space then they are linearly dependent (Corollary 6.24 of
MA106 notes). That is there exists a linear combination of vectors that equals zero.

XTv = 0 (20)

=⇒ XXTv = 0 (21)

Therefore ker(XXT ) > 0 and hence by the rank-nullity theorem the matrix XXT is not full rank
and so is not invertible.

If we add a λIp+1 term to XXT it then becomes invertible.

A.2.2 MLE with Gaussian assumption on conditional distribution

The MLE for w, given with the probabilistic approach, is equivalent to the solution found using
the method of least squares.

In (2) we just try and find the vector that minimises the squared difference between the prediction
and the outcome. But we can take a probabilistic approach, and model the uncertainty of the
outcome variable using a probability distribution, then try and find w that maximises the likelihood
of this model being correct.

Assume {(xi, yi) | i = 1, . . . n} are repeated independent samples from random variables X and Y
respectively. With Y | X ∼ N(f(x;w), σ2).

We then can write that:

P(y1, . . . yn | x1, . . .xn;w, σ) =

∏n
i=1 P(xi, yi;w, σ)∏n
i=1 P(xi;w, σ)

(22)

=

n∏
i=1

P(yi | xi;w, σ) (23)

The MLE of w is then the value of w that maximise the likelihood of our dataset under this model
therefore:
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wMLE : = argmax
w

log
( n∏

i=1

P(yi | xi;w, σ)
)

(24)

= argmax
w

n∑
i=1

log
( 1√

2πσ2
exp

(
− (yi − f(xi;w))2

2σ2

))
(25)

= argmax
w

n∑
i=1

(
− (yi − f(xi;w))2

2σ2

)
(26)

= argmin
w

n∑
i=1

(yi − f(xi;w))2 (27)

Therefore (24) is equivalent to solving (1) when we assume f takes a linear form.

If the noise in the data is not normally distributed then it will not make sense to assume a nor-
mal distribution. For example if the true data generating model as noise coming from a skewed
distribution.

A.2.3 Symmetric feature transform

If ϕ(X) is symmetric and invertible then wLS = [ϕ(X)]−1yT

wLS = [ϕ(X)ϕ(X)T ]−1ϕ(X)yT (28)

= ϕ(X)−1ϕ(X)−1ϕ(X)yT (29)

= ϕ(X)−1yT (30)

A.2.4 Ridge regression solution

wLS-R : = argmin
w

n∑
i=1

(yi − f(xi;w))2 + λwTw (31)

= argmin
w

− 2wTXYT +wTXXTw + λwTw (32)

Now taking the derivative with respect to w, and setting to zero to find the stationary point we get:

0 = −2XYT + 2XXTwLS-R + 2λwLS-R (33)

XYT = (XXT + λIp+1)wLS-R (34)

wLS-R = (XXT + λIp+1)
−1XYT (35)
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A.3 Bayesian Approach

A.3.1 MAP estimate in Bayesian linear regression with normal prior and likelihood

If we have that p(yi | w;xi) = N(f(xi;w), σ2) and p(w) = N(0, Iσ2
w). Then the MAP estimate for

w is equal to wLS-R.

wMAP : = argmax
w

p(w | D) (36)

= argmax
w

p({y1, . . . , yn} | w; {x1, . . . ,xn})p(w) (37)

= argmax
w

n∏
i=1

N(f(xi;w), σ2)N(0, σ2
w) (38)

= argmax
w

n∑
i=1

(
− (yi − f(xi;w))2

2σ2

)
− wTw

2σ2
w

(39)

= argmin
w

n∑
i=1

(yi − f(xi;w))2 +
σ2

σ2
w

wTw (40)

In line (37) we have used that p(w | {y1, . . . , yn}; {x1, . . . ,xn}) ∝ p({y1, . . . , yn} | w; {x1, . . . ,xn})p(w)
which we get from Bayes rule.

A.3.2 Predictive distribution in Bayesian Linear Regression

Assuming p(w) = N(0, Iσ2
w) and p(y | w;x) = N(ϕ(X)TwIσ2), whereX is the matrix with columns

given by the vectors in x. Then with new observation x∗, we want to calculate the predictive
distribution p(ŷ | x∗, D).

In (A.3.1) we just looked at p(w | y;x) up to a proportionality constant, but we can calculate
the full probability density. In the Pattern Recognition and Machine Learning book by Bishop,
equation (2.116) on p.93 gives the full form for the posterior distribution p(w | y;x).

Using this equation and substituting the values we get:

p(w | y;x) = N
(( 1

σ2
ϕ(X)ϕ(X)T +

1

σ2
w

I
)−1

ϕ(X)y
1

σ2
,
( 1

σ2
ϕ(X)ϕ(X)T +

1

σ2
w

I
)−1)

(41)

Now to get p(ŷ | y;x∗,x) we need to calculate the following integral:

∫
p(ŷ | w;x∗)p(w | y;x) dw (42)

Equation (41) gives the density for p(w | y;x). And we assume that p(ŷ | w;x∗) = N(ϕ(x∗)Tw, σ2),
recall that in Bayesian linear regression we are assuming that y = f(x;w) + ϵ.
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Now to calculate the integral (42) we refer again to the book by Bishop. In particular, equa-
tion (2.115) gives the marginal distribution when we have Gaussian marginal and conditional
distributions.

After substituting the values we get:

p(ŷ | y;x∗,x) = N
(
ϕ(x∗)T

( 1

σ2
ϕ(X)ϕ(X)T +

1

σ2
w

I
)−1

ϕ(X)y
1

σ2
,

σ2 + ϕ(x∗)T
( 1

σ2
ϕ(X)ϕ(X)T +

1

σ2
w

I
)−1

ϕ(x∗)
)

(43)

= N
(
f(x∗;wLS-R), σ

2 + ϕ(x∗)Tσ2
(
ϕ(X)ϕ(X)T +

σ2

σ2
w

I
)−1

ϕ(x∗)
)

(44)

In line (44) f(x∗;wLS-R) := ϕ(x∗)TwLS-R, where wLS-R is the same as (35) but with X replaced by
ϕ(X).

A.4 Binary Classification

A.4.1 Bayes Classifier

The binary decision rule f∗(x) = argmax
k∈{−1,+1}

P(Y = k | X = x) minimises the risk with respect to the

zero-one loss function.

EX,Y [L(f(X), Y )] = EXEY |X [1{f(X) ̸=Y }] (45)

Now if we minimise EY |X [1{f(X)̸=Y }] for each X = x, then this will minimise the risk.

EY |X [1{f(X) ̸=Y }] =
2∑

k=1

1{f(x)̸=k}P(Y = k | X = x) (46)

=

2∑
k=1

(1− 1{f(x)=k})P(Y = k | X = x) (47)

= 1−
2∑

k=1

1{f(x)=k}P(Y = k | X = x) (48)

Therefore to minimize this expression, we want f(x) to take the value k that has the largest posterior
class probability.

argmin
f(x)

EY |X [1{f(X) ̸=Y }] = argmax
k∈{−1,+1}

P(Y = k | X = x) (49)
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In the lecture slides we talked about a choosing a decision boundary given by the level set g(x) = 0,
where if g(x) ≥ 0 then we predict the class +1 and otherwise −1.

If we write:

f(x) =

{
+1, g(x) ≥ 0

−1, g(x) ≤ 0

With g(x) := P(Y = 1 | X = x)− P(Y = −1 | X = x), then this formulation is equivalent to (49).
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