Skip to contents

The CTVsuggest() function takes a Task View name and argument n, then outputs a data.frame containing the top n recommendations for the chosen Task View.

Usage

CTVsuggest(
  taskview = "Econometrics",
  n = 5,
  ignore = NULL,
  package = NA,
  ranktaskview = NA
)

Arguments

taskview

A character vector with one element, must be one of the Task Views available

n

An integer that decides the number of suggestions to show.

ignore

A character vector of package names that you want to ignore from output suggestions.

package

A string, that is a package name that is on CRAN.

ranktaskview

A character vector with one element, must be one of the Task Views available

Value

A data.frame with suggested packages and there classification probability.

Details

The predicted probabilities are computed from the model object constructed with the CTVsuggestTrain::Train_model() function.

Examples

# Output top 5 suggestions for the Econometrics Task View,
# whilst hiding the GVARX package from suggestions.
CTVsuggest(taskview = "Econometrics", n = 5, ignore = "GVARX")
#>           Econometrics  Packages
#> JFE          0.9935719       JFE
#> iClick       0.9915758    iClick
#> iForecast    0.9903137 iForecast
#> wildrwolf    0.9903021 wildrwolf
#> ecic         0.9876013      ecic

# Output predicted probabilities for the task view assignment of the doc2vec package
CTVsuggest(package = "doc2vec")
#>          ActuarialScience               Agriculture                  Bayesian 
#>                    0.0000                    0.0000                    0.0000 
#>           CausalInference                  ChemPhys            ClinicalTrials 
#>                    0.0000                    0.0000                    0.0000 
#>                   Cluster                 Databases     DifferentialEquations 
#>                    0.0000                    0.0000                    0.0000 
#>             Distributions              Econometrics            Environmetrics 
#>                    0.0000                    0.0000                    0.0000 
#>              Epidemiology        ExperimentalDesign              ExtremeValue 
#>                    0.0000                    0.0000                    0.0000 
#>                   Finance            FunctionalData           GraphicalModels 
#>                    0.0000                    0.0000                    0.0000 
#>  HighPerformanceComputing                 Hydrology           MachineLearning 
#>                    0.0000                    0.0000                    0.0000 
#>            MedicalImaging              MetaAnalysis               MissingData 
#>                    0.0000                    0.0000                    0.0000 
#>               MixedModels           ModelDeployment      NumericalMathematics 
#>                    0.0000                    0.0000                    0.0000 
#>        OfficialStatistics                     Omics              Optimization 
#>                    0.0000                    0.0000                    0.0000 
#>          Pharmacokinetics             Phylogenetics             Psychometrics 
#>                    0.0000                    0.0000                    0.0000 
#>                    Robust                   Spatial            SpatioTemporal 
#>                    0.0000                    0.0000                    0.0000 
#>           SportsAnalytics                  Survival        TeachingStatistics 
#>                    0.0000                    0.0000                    0.0000 
#>                TimeSeries                  Tracking           WebTechnologies 
#>                    0.0000                    0.0000                    0.0000 
#>      ReproducibleResearch                      none NaturalLanguageProcessing 
#>                    0.0001                    0.0056                    0.9940